DUDLEY KNOX LIERARY
NAVAL POSTGRADUATE
MONTEREY CA $93943-5101$

Approved for public release; distribution is unlimited.
PUBLIC-KEY CRYPTOGRAPHY: A HARDWARE IMPLEMENTATION AND NOVEL NEURAL NETWORK-BASED APPROACH
by

Phong Nguyen
Lieutenant, United States Navy
B.S.E.E., United States Naval Academy, 1985

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING
from the
NAVAL POSTGRADUATE SCHOOL
September, 1992
PORT SECURITY CLASSIFICATION UNCLASSIFIED
CURITY CLASSIFICATION AUTHORITY

CLASSIFICATION/DOWNGRADING SCHEDULE
FORMING ORGANIZATION REPORT NUMBER(S)
ME QF PERFQRMING ORGANIZATION rical and Computer Eng. 1 Postgraduate School

6b. OFFICE SYMBOL (if applicable)
Code 32
terey, CA 93943-5000

ME OF FUNDING/SPONSORING GANIZATION

DRESS (City, State, and ZIP Code)

REPORT DOCUMÉNTATION PAGE

UNCLASSIFIED

1b. RESTRICTIVE MARKINGS

3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release; distribution is unlimited
5. MONITORING ORGANIZATION REPORT NUMBER(S)

7a. NAME OF MONITORING ORGANIZATION Naval Postgraduate School

7b. ADDRESS (City, State, and ZIP Code) Monterey, CA 93943-5000
9. PROCUREMENT INSTRUMENT IDENTIFICATIOCN NUMBER
10. SOURCE OF FUNDING NUMBERS

PROGRAM			
ELEMENT NO.	PROJECT NO.	TASK NO.	WORK UNIT ACCESSION

LE (Include Security Classification)
PUBLIC-KEY CRYPTOGRAPHY: A HARDWARE IMPLEMENTATION AND NOVEL NEURAL NETW ORK-BASED APPROACH (U)
RSONALAUTHOR(S)
ng Nguyen

PPLEMENTARY NOTATIOThe views expressed in this thesis are those of the author and do not reflect the official y or position of the Department of Defense or the United States Government.

COSATI CODES		
D	GROUP	SUB-GROUP

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Cryptography, Public-Key, Secret-Key, Discrete Logarithm, Exponentiation, Diffie-Hellman, RSA, Inverse, GCD, Neural Netwo Back-Propagation, Factorization, Sum of Residues, Modulo Reduction
STRACT (Continue on reverse if necessary and identify by block number)
concealment of information passed over a non-secure communication link lies in the complex field of cryp ohy. Furthermore, when absolutely no secure channel exists for the exchange of a secret key with which data pted and decrypted, the remedy lies in a branch of cryptography known as public-key cryptosystem (PKS). Th provides an in-depth study of the public-key cryptosystem. Essential background knowledge is covered leadin a VLSI implementation of a fast modulo exponentiator based on the sum of residues (SOR) method. Fast modul nentiation is vital in the most popular PKS schemes. Furthermore, since all cryptosystems make use of som of mapping functions, a neural network - an excellent non-linear mapping technique - provides a viable mediur which a possible cryptosystem can be based. In examining this possibility, this thesis presents an adaptation ck-propagation neural network to a "pseudo" public-key arrangement. Following examinations of the networ management system is then devised. Finally, a complete top-down block diagram of an entire cryptosyste on the neural network of this study is proposed.

ABSTRACT

The concealment of information passed over a non-secure communication link lies in the complex field of cryptography. Furthermore, when absolutely no secure channel exists for the exchange of a secret key with which data is encrypted and decrypted, the remedy lies in a branch of cryptography known as public-key cryptosystem (PKS). This thesis provides an in-depth study of the public-key cryptosystem. Essential background knowledge is covered leading up to a VLSI implementation of a fast modulo exponentiator based on the sum of residues (SOR) method. Fast modulo exponentiation is vital in the most popular PKS schemes. Furthermore, since all cryptosystems make use of some form of mapping functions, a neural network - an excellent non-linear mapping technique - provides a viable medium upon which a possible cryptosystem can be based. In examining this possibility, this thesis presents an adaptation of the back-propagation neural network to a "pseudo" public-key arrangement. Following examinations of the network, a key management system is then devised. Finally, a complete top-down block diagram of an entire cryptosystem based on the neural network of this study is proposed.

ACKNOWLEDGMENTS

The author extends his gratitude to Professor Yang for the insights and encouragement throughout the research. In addition, credit must be aknowledged for LT Daniel Sullivan's assistance in the neural network section and for LT Arthur Billingsley's general support in this thesis. Finally, my appreciation and admiration are extended to the faculty and staff of the Electrical and Computer Engineering Department for the outstanding guidance and opportunity provided throughout the past two years.

TABLE OF CONTENTS

I. INTRODUCTION 1
II. MATHEMATICAL BASIS FOR THE DEVELOPMENT OF PUBLIC-KEY CRYPTOSYSTEMS 3
A. MODULO ARITHMETIC 3
B. FAST MODULO EXPONENTIATION 5
C. DISCRETE LOGARITHM 8
D. INVERSES 8
E. ARTIFICIAL NEURAL NETWORK 9
F. THE PUBLIC-KEY CRYPTOSYSTEM 14

1. The Diffie-Hellman Scheme for Public-Key Cryptosystem 15
2. The RSA Cryptosystem 18
G. CRYPTOANALYSIS 20
3. Factorization 21
III. HARDWARE DEVELOPMENT OF THE PUBLIC-KEY CRYP- TOSYSTEM 25
A. MODULO EXPONENTIATION USING RECURSIVE SUM OF RESIDUES 25
4. Sum of Residues Reduction 27
B. VLSI LAYOUT DEVELOPMENT 32
5. Master Slave Flip Flop 32
6. Adder 33
7. Multiplexer 35
8. Modulo Reduction Unit 36
IV. A NEURAL NETWORK-BASED PUBLIC-KEY CRYPTOSYS-TEM40
A. EXPERIMENTS IMPLEMENTING A NEURAL NETWORK IN CRYPTOSYSTEMS 40
B. EXPERIMENTAL RESULTS AND OBSERVATIONS 46
C. AN IN-DEPTH EXAMPLE 50
D. KEY MANAGEMENT 53
9. A Proposed Pseudo Public-Key Cryptosystem Using A Neural Network 54
10. Justification of the "Pseudo" Prefix 57
E. PROBLEMS OF A NEURAL NETWORK AS A CRYPTOSYSTEM AND PROPOSED SOLUTIONS 58
F. DEVELOPMENT OF A COMPLETE BLOCK-DIAGRAM-LEVEL HARDWARE SCHEME USING A NEURAL NETWORK IN PKS 61
V. CONCLUSION 64
APPENDIX A. SUPPLEMENTARY PROGRAMS 67
APPENDIX B. RNL SIMULATION OF MODULO REDUCTION UNIT 72
APPENDIX C. SAMPLE NEURAL NETWORK FROM NEURAL- WARE 80
REFERENCES 95
INITIAL DISTRIBUTION LIST 98

LIST OF TABLES

2.1 EULER'S TOTIENT FUNCTIONS 5
2.2 EXAMPLE FAST EXPONENTIATION FOR $5{ }^{10}$ 6
2.3 EXAMPLE FAST EXPONENTIATION AND MODULO OF $5^{10} \bmod 9$ 7
2.4 EXHAUSTIVE FACTORIZATION WITH ONE '486 COMPUTER 23
2.5 FACTORIZATION TIME WITH SANDIA'S BENCHMARK [REF 17] 24
3.1 EXAMPLE SUM OF RESIDUES FOR $18 \bmod 7$ 28
3.2 EXAMPLE RECURSIVE SOR FOR $18 \bmod 7$ 28
4.1 EXAMPLE TRAINING SET 45
4.2 TRAINING TIME VS ERROR RELATIONSHIP 47
4.3 RELATIONSHIP BETWEEN NETWORK SIZE AND ERROR 48
4.4 EXHAUSTIVE SEARCH CRYPTOANALYSIS TIME FOR A SIN- GLE CELL 56

LIST OF FIGURES

2.1 A Processing Element 11
2.2 A Back-Propagation Network 12
2.3 Block Diagram of Diffie-Hellman Cryptosystem 16
2.4 Block Diagram of RSA Cryptosystem 19
3.1 Block Diagram of over all exponentiation unit 26
3.2 Modulo Reduction Unit 29
3.3 Overhead Vs Input Bit 30
3.4 Block Diagram of 4-Bit SOR with Logic Units 31
3.5 MSFF Circuit Diagram 32
3.6 MSFF Layout 33
3.7 Adder Circuit 34
3.8 Adder Layout 34
3.9 MUX Function Block Circuit Diagram 35
3.10 Layout of MUX 36
3.11 Layout of 4-bit Modulo Reduction Unit 37
3.12 Size of Modulo Reduction Unit 38
3.13 Speed Performance of Modulo Reduction Unit From SPICE 38
4.1 Neural Network As A Cryptosystem Block Diagram 42
4.2 Back-Propagation Network For Encryption and Decryption 43
4.3 Relationship between Network Size, Iterations to Convergence and Input Size 49
4.4 Neural Network in PKS 62

I. INTRODUCTION

In the recent past, there possibly was a time when protection of vital electronic information was not considered a necessity and therefore not deemed to be a topic of common interest. Such a time is forever behind us. In our time, information is most often passed across a public telecommunication medium. Whether this medium be a telephone line or satellite link, there exist eavesdropping methods which are so sophisticated and efficient that no information is physically secure. How then is one to revert to the inherent privacy of the past? The answer to this question and thus the solution to concealment of information lie in the complex science of cryptography.

Cryptography is the field involving the preparation of messages intended to be incomprehensible to all except those who legitimately possess the means to recover the original information [Ref 1]. At present, the fastest and most popular cryptosystems employ some convention of mapping a set of numbers representing data to another set of numbers (encryption). The recovery of data is done by simply reversing the mapping process so as to obtain the original content (decryption). Often, this type of mapping is governed by the notion of a key. In order to provide the essential element of secrecy, system users must provide this key which is normally a privately or semiprivately known string of characters or bits. For a cryptosystem to be completely secure, knowledge of both the mapping function and key is required to recover the original text from encrypted text.

Of the cryptosystems which use the forementioned concept of a key, two distinct categories are made: secret-key and public-key.

As suggested by the name, a cryptosystem is secret-key if the key must be secretly agreed upon prior to any parties being able to communicate through the
system. In this arrangement, both parties normally have the same key which is used in both encryption and decryption. Algorithms implementing this scheme are labeled symmetric. Intuitively, one recognizes a severe restriction in the secret-key system: an advance agreement on the key over a secure channel. When such a channel is not readily available, the topic of this thesis, public-key cryptosystem (PKS), is the remedy.

Most PKS systems use an asymmetric algorithm whereupon separate keys are required for encryption and decryption. This scheme allows the passing of keys, most likely encryption keys, over an unsecure channel without any compromise to the system's safety. In boasting this versatile capability, however, public-key system must pay a price, namely a reduction in system speed [Ref 2]. Currently, PKS is much slower than secret-key, too slow for large quantities of data. For this reason, its use is often limited to the exchange of keys in secret-key systems. In the future, along with advancements in technology, perhaps this speed barrier will be lifted yielding more opportunity for the employment of PKS.

It is in the spirit of this future that this thesis is presented. It is an in-depth study of the public-key cryptosystem. First, the mathematical basis behind PKS is covered so as to establish an essential background knowledge in a somewhat esoteric subject. Second, the capability of VLSI implementation of PKS is explored via a fast modulo exponentiator, a hardware device required in two of the most popular public-key systems. A vital component of the fast modulo exponentiator, a modulo reduction unit, is designed with MAGIC tools [Ref 3], validated with RNL simulation [Ref 4], and examined for possible use. Finally, to conclude the scope of this research, a completely novel approach to PKS is proposed: a possible implementation of neural networks in public-key cryptography.

II. MATHEMATICAL BASIS FOR THE DEVELOPMENT OF PUBLIC-KEY CRYPTOSYSTEMS

Compared to the complexity of conventional engineering mathematics, the concepts behind the algorithms for public-key cryptosystem are elementary in nature yet without complete understanding of them, no initial familiarization to the system is possible. Due to this realization, this chapter concentrates heavily on the mathematics of asymmetric cryptography. It provides a basic overview of modulo arithmetic, fast exponentiation, and discrete logarithm. It also outlines a background knowledge in artificial neural networks, a branch of engineering upon which a completely new angle in cryptography is based. Furthermore, the fundamentals of public-key cryptosystems are covered using two well-established examples, the Diffie-Hellman and RSA systems. Finally, the chapter concludes with the problem of cryptoanalysis: the purpose of all cryptosystems.

A. MODULO ARITHMETIC

Modulo arithmetic is a branch of integer mathematic best explained by an example.

Simply,

$$
21 \equiv 3(\bmod 9)
$$

or

$$
21=3+9 \times 2
$$

This operation is commonly described as 21 divided by 9 equals 2 with remainder of 3.

When written as $x \equiv y(\bmod z)$, by convention x is said to be "congruent to y modulo z." Congruency applies if and only if

$$
x=y+k \times z
$$

where k is any integer. Also y is called a residue mod z of x if and only if $x=$ $y(\bmod z)$.

Note that $-15(\bmod 6) \equiv-3(\bmod 6)$.
Clearly, for any z, y belongs to a complete set of residues $\{0,1,2 \ldots, z-1\}$. From this complete set of residues, there exists a subset called a reduced set of residues which has elements relatively prime to the modulus z. For example, a complete set of residues modulo 12 is $\{0,1,2,3,4,5,6,7,8,9,10,11\}$. From this, only $\{1,5,7,11\}$ does not have a common factor with 12 (0 excluded); it is therefore a reduced set [Ref 2].

For a modulo prime, clearly the reduced set of residues contains all elements of the complete set except for 0 . Therefore for a prime n, the reduced set of residues has $(n-1)$ elements. In addition, generally the reduced set of residues for a product of two primes m and n has $((m-1)(n-1))$ elements and that for a prime power n^{r} has $(n-1) n^{(r-1)}$ elements. Commonly, the number of elements in a reduced set of residues for modulo n is referred to as the Euler Totient function $\phi(n)$ [Ref 2]. Table 2.1 shows $\phi(n)$ for several n [Ref 2].

Like normal integer arithmetic, addition and multiplication in integer modulo n abide by the laws of associativity, commutativity and distributivity [Ref 2].

Theorem 1 [Ref 2]:

$$
(a+b)(\bmod n)=(a \bmod n+b \bmod n) \bmod n
$$

n	Reduced set	$\phi(n)$
n prime	$1,2, \ldots, n-1$	$n-1$
$n^{2}(n$ prime $)$	$[1,2, \ldots, n-1, n+1$,	$n(n-1)$
	$\ldots, 2 n-1,2 n+1$,	
	$\left.\ldots, n^{2}-1\right]$	
.	\cdot	\cdot
.	\cdot	\cdot
$n^{r}(n$ prime $)$	$\left[1,2, \ldots, n^{r}-1\right.$	$\left(n^{r}-1\right)-\left(n^{r-1}-1\right)$
	\ldots multiples of $\left.n<n^{r}\right]$	$=n^{r-1}(n-1)$
$p q(p, q$ primes $)$	$[1,2, \ldots, p q-1$	$(p q-1)-(q-1)-(p-1)$
	\ldots multiples of p	$=(p-1)(q-1)$
.	\ldots multiples of $q]$	
.	\cdot	\cdot
.	\cdot	\cdot
$\prod_{i=1}^{t} p_{i}^{e^{i}} ;\left(p^{i}\right.$ primes $)$		$\prod_{i=1}^{t} p_{i}^{e^{i}-1}\left(p_{i}-1\right)$

TABLE 2.1: EULER'S TOTIENT FUNCTIONS

Theorem 2 [Ref 2]:

$$
a b(\bmod n)=(a \bmod n \times b \bmod n) \bmod n
$$

These two theorems form the basis for the development of fast modulo exponentiation.

B. FAST MODULO EXPONENTIATION

Many public-key cryptosystem requires the computation of $x^{k} \bmod n$, with n and k being extremely large numbers (in excess of 256 bits.) A naive solution would be to multiply by x a repetition of $k-1$ times then taking the modulo of the large result. At best, this is both cumbersome and inefficient for today's computers due to finite word length limit. Fortunately, there is an algorithm which avoids this

Iteration(i)	k bit	square ops $\times p p_{i-1}$	$p p_{i}$
1	0	5^{1} but kbit=0 so no op	1 (remains the same)
2	1	$5^{2} \times 1$	5^{2}
3	0	$\left(5^{2}\right)^{2}$ but kbit=0 so no op	5^{2} (remains the same)
4	1	$\left(\left(5^{2}\right)^{2}\right)^{2} \times 5^{2}$	5^{10}

TABLE 2.2: EXAMPLE FAST EXPONENTIATION FOR 5^{10}
straightforward method: fast modular exponentiation [Ref 5].
Taking advantage of Theorem 2, the exponentiation is faster when performed by repeated squaring operations coupled with conditional multiplication by the partial product according to the binary representation of the exponent. This is best explained by an example.

Example:

Suppose we are required to find $5^{10} \bmod 9$.
let $x=5 ; k=10 ; m=9$
Using $p p_{0}=1$ and

$$
p p_{i}= \begin{cases}x^{2^{2-1}} \times p p_{i-1} & \text { if } k_{i}=1 \\ p p_{i-1} & \text { if } k_{i}=0\end{cases}
$$

k in binary is 1010. In accordance to k, bit by bit from least significant bit (LSB) first, the squaring of x occurs iteratively for every k bit (0 or 1) but the result is multiplied by the partial product only when k bit is 1 . All the while, modulo operation is performed in each squaring or multiplication in order to maintain a manageable intermediate result. The partial product is always initialized to 1 (partial product at iteration step $0, p p_{0}=1$). Let's examine Table 2.2 for clarity. From the result of Table 2.2, indeed we have accomplished 5^{10}.

If we incorporate the modulo operation into each iteration according to Theorem 2 , the modulo problem is also solved. Table 2.3 incorporates modulo reduction to

Iteration	k bit	Square ops	Multiply ops	$p p_{i}$
1	0	$\left(5^{1}\right) \bmod 9=\mathbf{5}$		1 (Init)
2	1	$\left(\mathbf{5}^{2}\right) \bmod 9=7 \times$	$1 \bmod 9$	$=7$
3	0	$\left(7^{2}\right) \bmod 9=4$		
4	1	$\left(4^{2}\right) \bmod 9=7 \times$	$\mathbf{7} \bmod 9$	$=49$

TABLE 2.3: EXAMPLE FAST EXPONENTIATION AND MODULO OF $5{ }^{10} \bmod 9$
the previous example.

Example:

$5^{10} \bmod 9$
Table 2.3 outlines in detail the process until a partial product of 49 is obtained. Note that the result of the square operation becomes the number to be squared in the next iteration. Also the previous partial product is the number in the multiplying operation if the k bit is 1 . In this example, since $49 \bmod 9=4$, indeed $5^{10} \bmod 9$ (which also equals 4) is performed.

In this example the savings in multiplications is 4 (5 versus 9 using the naive method). For larger number applications, let a be the number of binary bits of the exponent k and b be $\log _{2} a$. Using fast exponentiation, the number of multiplications (call it X) is bounded by $b+1<X<2 b+1$ depending on the number of 1's and 0 's in k. X with fast exponentiation grows linearly in length of k and is considerably smaller then X obtained by the straightforward method of multiplying by $k-1$ times [Ref 5].

Appendix A contains a C program implementing fast modular exponentiation using the above algorithm. It should be noted that the program is not suitable for numbers exceeding the capability of the computer. Most computers have 32 bits resolution therefore results which are greater than 32 bits are likely to be too large. This limitation, however, is resolved by using hardware for fast modular exponentiation
as will be shown in Chapter III.

C. DISCRETE LOGARITHM

Discrete logarithm is the branch of mathematics centered on the solution to the exponent of a powered number; namely, finding x in $a^{x} \equiv b \bmod n$ when given a, b, n.

Example:

$a=3 ; b=4 ; n=11$;

$$
\begin{aligned}
& 3^{1} \bmod 11=3 \\
& 3^{2} \bmod 11=9 \\
& 3^{3} \bmod 11=5 \\
& 3^{4} \bmod 11=4
\end{aligned}
$$

so $x=4$.

Given a large modulus n and a, b (greater than 100 digits magnitude), discrete logarithm is classified as a non-deterministic polynomials problem; the solution to which is extremely difficult and impractical to derive [Ref 6]. Therefore its use is prevalent throughout many public-key cryptosystems.

D. INVERSES

Unlike integer arithmetic, modulo arithmetic often has inverses. Given $a \in$ $\{0, n-1\}$, there could be a unique $b \in\{0, n-1\}$ such that

$$
a b(\bmod n) \equiv 1[\operatorname{Ref} 2]
$$

A systematic method to compute inverses involves the notion of the greatest common divisor $(g c d)$. Conventionally, $g c d(a, b)$ is an integer c such that a / c and
b / c result in the smallest possible integer value. For example, $\operatorname{gcd}(8,12)=4$ but $\operatorname{gcd}(8,16)=8$.

From the mathematics of $g c d$, we pose:
Lemma 1 [Ref 2]: if $\operatorname{gcd}(a, n)=1$ then

$$
a_{i} \bmod n \neq a_{j} \bmod n ; 0 \leq i, j \leq n
$$

Fermat's Theorem [Ref 2]: p is a prime and $g c d(a, p)=1$ then

$$
a^{(p-1)}(\bmod p)=1
$$

Theorem 3 [Ref 2]:if $\operatorname{gcd}(a, n)=1$ then an $a^{-1}, 0<a^{-1}<n$ exists such that

$$
a a^{-1} \equiv 1(\bmod n)
$$

Theorem 4 [Ref 2]: if $\operatorname{gcd}(a, n)=1$ then

$$
a^{\phi(n)} \bmod n=1
$$

Recall $\phi(n)$ is the number of elements in a reduced set of residues (Table 2.1).
From the above Theorems, Euclid's algorithm is developed to find $\operatorname{gcd}(a, n)$ as well as inverse $a^{-1}(\bmod n)$ of $a \bmod n$. It is not within the scope of this study to detail the foundation of this algorithm. If further information is preferred, reference 2 is suggested for consultation. For the purpose of this thesis, C programs for gcd and inverse are provided in Appendix A [Ref 2].

E. ARTIFICIAL NEURAL NETWORK

In 1985, Ackley, Hinton and Sejnowski [Ref 7] applied a back-propagation neural network to encode orthogonal binary vectors of length N using $\log _{2} N$ hidden units. Following this, Cottrell, Munro and Zipser [Ref 8] used the same type of network to
achieve image (data) compression. Both these two application examples involved a special form of mapping via neural networks and, thus, suggested a possible use in cryptography. In fact, they are inspirational for the work of Chapter IV in this thesis which explores in detail the possibility of implementing neural networks in a novel public-key cryptosystem. In light of this, this section provides a basic understanding of neural networks, especially the back-propagation neural network.

A formal definition of a neural network is:
"A neural network is a parallel, distributed information processing structure consisting of processing elements (which can possess a local memory and can carry out localized information processing operations) interconnected via unidirectional signal channels called connections. Each processing element has a single output connection that branches into as many collateral connections as desired; each carries the same signal- the processing element ouput. This ouput signal can be of any mathematical types. The information of each element can be arbitrary with the restriction that it must be completely local; it must depend only on the current values of arriving input signals at and on values in local memory." [Ref 9]

Having defined a neural network, the basic unit, a processing element, is shown in Figure 2.1. The processing element has many input connections combined by a simple summation. The combination is then transformed through a transfer function. The function of interest here is a hyperbolic tangent. The single ouput of the element is fanned out to several ouput paths which then become inputs of other elements. The ouput to input connections each has a corresponding weight. Since the connections prior to entering the elements are modified by the weights, the summation within each element is a weighted sum. The actual mathematical process within an element is thus:

$$
f\left(\sum_{i} w_{i j} x_{i}\right) ; \quad i=\text { layer } ; j=\text { number of weights }
$$

Figure 2.1: A Processing Element
An overall neural network consists of many processing elements joined together as previously discussed. A typical neural network, a back-propagation network in this case, is shown in Figure 2.2 [Ref 10]. For organization purpose, processing elements are grouped into layers. A normal network is composed of two layers with connections to the outside world: an input buffer where data is entered and an output buffer where the response of the network to the given input is stored. Layers between the input and ouput layers are named hidden layers [Ref 10].

There are currently many types of neural networks designed for multitude of applications. For the purpose of encoding and decoding in a cryptosystem where the mapping of input to output is almost always non-linear, a most suitable network is the back-propagation type.

A back-propagation neural network is a 3 to 5 layer network that behaves as an interpolative-associative mapping scheme. That is it has the ability to learn mapping by generalizing input/ouput pairs relationship [Ref 9]. Moreover, the network employs a supervised, delta-rule learning scheme whereupon the input stimulus and corresponding output are first presented to the system which in turn reduces the error between the actual output of each element and the desired ouput and gradually

Figure 2.2: A Back-Propagation Network [Ref 10]
configures its weights to achieve the desired input/ouput mapping. After learning is accomplished, the error is reduced to minimum and the actual outputs of all inputs of interest will be approximately equaled to the theoretical output [Ref 10].

Having covered the necessary basics, the mathematical background for the backpropagation network is now provided. In order to establish a common convention, the notations used for this development is as follows.

- $x_{j}^{[s]} \equiv$ current output of $j^{\text {th }}$ neuron in layer s,
- $w_{j i}^{[s]} \equiv$ connection weights joining $i_{t h}$ neuron in layer $[s-1]$ to $j^{\text {th }}$ neuron in layer s,
- $I_{j}^{[s]} \equiv$ weight summation of inputs to $j^{\text {th }}$ neuron in layer s.

The mathematical process for single back-propagation element is:

$$
x_{j}^{[j]}=f\left[\sum_{i}\left(w_{j i}^{[j]} x_{i}^{[j-1]}\right)\right]=f\left(I_{j}^{[j]}\right)
$$

Given that the network has some global error function E, the critical parameter that is fed back through the layers is defined as:

$$
e_{j}^{[s]}=-\partial E / \partial I_{j}^{[s]}
$$

where $e_{j}^{[s]}$ is the local error of processing element j in layer s. Furthermore, using the chain rule twice yields:

$$
e_{j}^{[s]}=f^{\prime}\left(I_{j}^{[s]}\right) \sum_{k}\left(e_{k}^{[s+1]} w_{k j}^{[s+1]}\right) .
$$

The main mechanism in the back-propagation network is to forward the input to the output, determine the error at the output, then propagate the errors back using the above equations. . Given knowledge of local errors, the final aim is to minimize the global error by modifying the weights.

This is done by using the gradient rule which dictates that the weights change in the direction of minimum error.

$$
\Delta w_{j i}^{[s]}=-k\left(\partial E / \partial w_{j i}^{[s]}\right)
$$

where k is a learning coefficient.
Again using the chain rule:

$$
\begin{gathered}
\partial E / \partial w_{j i}^{[s]}=\left(\partial E / \partial I_{j}^{[s]}\right)\left(\partial I_{j}^{[s]} / \partial w_{j i}^{[s]}\right)=-e_{j}^{[s]} x_{i}^{[s-1]} \\
\Delta w_{j i}^{[s]}=k e_{[s]} x_{i}^{[s-1]} .
\end{gathered}
$$

For an in-depth derivation of all forementioned equations, the reader is referred to references 9 and 10 .

Using the above equations in several iterations, an algorithm for the backpropagation network can be developed to train the network weights in converging to
a given set of training data: inputs and corresponding outputs. It is not within the scope of this research to derive or show the algorithm; however, such an algorithm can be found in reference 9. In Chapter IV, a specific software package, Neuralware, will be utilize to set up a back-propagation network. The network will train with specific mapping functions so as to accomplish an encryption and decryption scheme in a newly-proposed "pseudo" public-key cryptosystem.

This concludes the necessary background in mathematic. We are now equipped with enough knowledge to explore the core of the public-key cryptosystem.

F. THE PUBLIC-KEY CRYPTOSYSTEM

The single foundation upon which all asymmetric cryptosystems are built is that of the one-way function. Such a function is practical to solve in one direction but within a range it is computationally infeasible for any algorithm to invert the solution taken over a range of elements [Ref 11]. A formal definition of a one-way function is beyond the scope of this study. An informal definition is that a one-way function is one in which for $f: x \rightarrow y$, it is easy to find $y=f(x)$ given x. However, given y, it is difficult to compute x such that $f(x)=y$ [Ref 12]. For use in cryptography, the difficulty must be great enough so as to render the solution impractical.

Currently we have a few one-way functions which are utilized exclusively in the public-key system. A good example of a one-way function is integer multiplication. Whereas the multiplication of large integers is relatively easy with current technology, the factoring of a large integer is time-consuming to the point of infeasibility. Another important example is modular exponentiation with large exponents. As previously discussed, fast exponentiation techniques makes the exponentiation practical. However, even with the best current algorithms and technology, the solution of a discrete logarithmic problem of such magnitude remains unattainable within a
reasonable time [Ref 13]. To see how the two suggested one-way functions are used in public-key cryptosystems, in-depth studies of two systems are now provided: the Diffie-Hellman and RSA cryptosystems.

1. The Diffie-Hellman Scheme for Public-Key Cryptosystem

The first system to achieve the notoriety of a true public-key system was proposed by Diffie and Hellman seminal paper in 1976 [Ref 14]. It is in this paper that the discrete logarithm problem was first proposed as a candidate for a one-way function. The scheme is best summarized as follows.

Let n be a large integer and g, another integer, such that $g \in\{1, n-1\}$. Parties A and B establish n and g over insecure channels. A then chooses a large integer x and computes $g^{x} \bmod n$ while B chooses y and computes $g^{y} \bmod n$. Next, A and B exchanges their perspective computations again over insecure channels without divulging x and y. At this point A has g^{y} and n (possibly compromised over unsecured channels) and x which was never communicated to anyone. Similarly, B has g^{x}, n and y. A and B can construct the key as follows.
for A: key $=\left(g^{y}\right)^{x} \bmod n$
for B: $k e y=\left(g^{x}\right)^{y} \bmod n$

$$
\left(g^{y}\right)^{x} \bmod \dot{n}=\left(g^{x}\right)^{y} \bmod n
$$

Clearly A and B now have the same key $\left(g^{x}\right)^{y} \bmod n$ which can be used for any cryptography systems. Because the operation of exponentiation with large exponent is slow, Diffie-Hellman is proposed only to make keys for faster private-key system such as DES so that the key will not be compromised [Ref 12].

Even if a cryptanalyst was able to intercept the exchanges for $g, n, g^{x} \bmod n$ and $g^{y} \bmod n$, he faces the problem of finding x and y from his known data. He must

Figure 2.3: Block Diagram of Diffie-Hellman Cryptosystem
solve a discrete logarithm problem, an NP class problem, which, to date, is accepted to be infeasible within certain time restraints [Ref 13]. A summarizing block diagram of the Diffie-Hellman cryptosystem is provided in Figure 2.3. Moreover, an example of its application is hereby offered.

Example [Ref 13]:

Let $g=7$ and $n=2 \times 739\left(7^{149}-1\right) / 6+1$.
Party A chooses a secret x, compute and send 7^{x} to B.
B receives $7^{x}=$

1274021801199739468824269244334322849749382042586931621654557735290322 914679095998681860978813046595166455458144280588076766033781

Party B chooses a secret y, compute and send 7^{y} to A. A receives $7^{y}=$

180162285287453102444782834834836799895015967046695346697313025121734 0599537720584759581176910625380692101651848662362137934026803049

Now both A and B can compute $7^{x y}$ and mod it with n to establish secret key $7^{x y} \bmod n$. Since a party other than A and B does not know either x or y in this case, it is infeasible to attempt finding. $7^{x y}$.

Note: The numbers in this example are obtained from reference 13 where neither x nor y was divulged. This author has been unable to find their values. In the original article, a challenge of 100 dollars was offered to anyone who could solve for x and y and thus $7^{x y}$.

Presently, the Diffie-Hellman scheme remains trustworthy because the discrete logarithm problem is still a difficult one to solve. Nevertheless, no one has
proven beyond a doubt that it is impossible to solve. In fact, many algorithms do exist which can derive the solution. The only setback is that even the best of them is not fast enough with current technology. For more safety, the integers x and y can simply be increased in magnitude and for the worst case, an establishment of new key within an acceptable time interval can render any cryptoanalysis harmless.

2. The RSA Cryptosystem

Invented in 1978, the Rivest, Shamir and Adleman (RSA) public-key cryptosystem incorporates two one-way functions: the discrete logarithm and factorization problems. The security guaranteed by this system is so sound that since its inception until present, it has been accepted as the most popular method of public-key encryption [Ref 15]. The elegance and subtle power of the RSA system is summarized as follows.

Party A generates 2 random primes of approximately 130 bits each, p and q. The product $p q$ is then computed and called n. The number of reduced residues elements is next obtained: $\phi(n)=(p-1)(q-1)$ (see Table 2.1). In turn, an integer e is generated such that $\operatorname{gcd}(e, \phi(n))=1$. A now has the public key $\langle e, n\rangle$ which can be published to B through insecured channels.

Having the public key, party B can encrypt a message by transforming the message into an integer value $m . m$ is then encrypt by:

$$
\operatorname{Encryp}(m)=m^{e} \bmod n
$$

In order to be able to decipher $\operatorname{Encryp}(m)$, A must make a private key from $\phi(n)$ and e. Such a key, D, is found by using Euclid's algorithm (Appendix A) so that,

$$
D e=1 \bmod \phi(n)
$$

Party A

Figure 2.4: Block Diagram of RSA Cryptosystem
Once D is found, the deciphering is simply done by,

$$
\operatorname{Deciph}(\operatorname{Encryp}(m))=(\operatorname{Encryp}(m))^{D} \bmod n
$$

Proof [Ref 6]:
Given all parameters above, by Euler's Theorem:
if $D e \equiv 1 \bmod (\phi) \rightarrow m^{D e} \equiv m \bmod n$

$$
\rightarrow m^{D e} \bmod n=m
$$

Figure 2.4 clarifies the process. In addition, a pedagogical example of RSA at work is shown below.

Example:

(Use actual Appendix A programs)

Let $p=7 ; q=13 \rightarrow n=7 \times 13=91 ; \phi(n)=(7-1)(13-1)=72$
Pick $e=5$ and $D=29$ such that $D e=2 \phi(n)+1=145$
Message $m=23$

$$
\begin{aligned}
& \operatorname{Encryp}(m)=23^{5} \bmod 91=4 . \\
& \operatorname{Decryp}(m)=4^{29} \bmod 91=23 .
\end{aligned}
$$

Judging solely on the above example, it might not seem obvious that the RSA system is safe. The reason is because the example's numbers are small. As stated earlier, with p and q both being about 130 bits, their product, n, can range in excess of 160 bits. In turn, e and D are also large numbers. Given this kind of range, to crack the code, one must face the discrete logarithm as well as factorization. To date, the factorization of a large product of primes remains unsolvable within a feasible time [Ref 2]. This fact is further examined in the next section, cryptoanalysis.

G. CRYPTOANALYSIS

The art of breaking cryptographic code is called cryptoanalysis. Since there are many public-key systems, the cryptoanalysis of only the RSA system is discussed so as to provide a flavor of how difficult it is and thereby prove its soundness.

The gist behind breaking the RSA system is the ability to solve for both the discrete logarithm and factorization problems. The latter of the two is the most difficult so the discrete logarithm problem will be the first to be explored.

Given the public key $\langle e, n\rangle$ and let's assume we were somehow able to factor n and therefore know p and q. We can now use Euclid's algorithm the same way as if the sender would to make his/her private key. Take the example in the RSA section.

$$
\langle e, n\rangle=\langle 5,91\rangle
$$

Knowing p and q we can compute $\phi(n)=(p-1)(q-1)$
Use Euclid's algorithm to find the secret key D such that

$$
D e=1 \bmod \phi(n)
$$

With D, the sender's encryption can be intercepted and decrypted by

$$
\operatorname{encryp}(m)^{D} \bmod n
$$

We have done the easy part. So far we assumed to know the two prime factors of the modulo n in the public key $\langle e, n\rangle$. The main insurance of the RSA system is the derivation of the two factors p and q [Ref 15]. Whereas the cryptographer only has to come up with two primes, a difficult task but not impossible with the primes being about 130 bits, the cryptoanalyst, in order to recover the two primes to compute $\phi(n)$, must face the grim task of factoring a number in excess of 260 digits within a finite time limit. This leads to the topic of factorization which will also be exploited as the safety basis for the later proposed cryptosytem based on neural network.

1. Factorization

A factorization problem has no current classification but the consensus is that it is neither a Polynomial (P) nor Nondeterministic Polynomial (NP)- Complete problem [Ref 16]. It is loosely described as a Nondeterministic Polynomial Indistinguishable (NPI) problem [Ref 16]. An algorithm is said to run in polynomial time (P) if there are constants A and c such that the running time for all inputs of length
k is $A k^{c}$ for all k. All P problems are deterministic and P -time bounded. An algorithm is deterministic if at each step of the computation, the next step is unique. P-time bounded means that the execution is in polynomial time since its complexity is bounded by a polynomial in the input length. An algorithm is said to run in NP time if there are no known deterministic P-time solution. In NP problems, at each step of computation, decision problems on the next step exist. To systematically solve an NP problem requires exponential time. A subset of NP problems, an NP-complete problem surfaces when $\mathrm{P}=\mathrm{NP}$. NP-complete problems are considered as the most difficult class in NP. An NPI problem is basically defined as having the level of difficulty in between NP and NP-complete. Factorization, an NPI problem, can not be solved in P-time and is not a member of NP-complete [Ref 2].

In order to be convinced that factorization of large numbers is at this time insurmountable, we examine the most straightforward and therefore easiest method. Given a number n to be factorized, we compute \sqrt{n} and round it to the next integer value, m. We then use m as the final index of a for to loop beginning with 1 . In each iteration of the loop, the operation (n mod index) is performed until the result is 0 notifying that an integer factor is found. Considering the speed of the computer, this is not a bad method of factorization if n is within a certain range of digits in length. However, this limit is what is exploited in public-key system (n is more than 130 digits in length.) The shortcoming of this method is explored using Matlab program on an IBM ' $486,50 \mathrm{MHz}, 16 \mathrm{MBytes}$ (Appendix A). The result is shown in Table 2.4 .

Undisputably, with n being at least 100 decimal bits in the RSA system, the method above, although possible, is hardly feasible if exhaustive search is required.

Fortunately, the mathematics of factoring have long surpassed the simplicity of the forementioned method. Currently there are established algorithms as well as

Digits factorized	Aprroximate time
10	less than lmsec
15	1.5 sec
20	15 min
25	28 hr
30	$3 y r^{*}$
40	3000 centuries *
* Estimate	

TABLE 2.4: EXHAUSTIVE FACTORIZATION WITH ONE '486 COMPUTER

on-going researches which could reduce the time factor at a phenomenal rate.
As a result of a concerted effort initiated in 1982, the mathematics department at Sandia National Laboratory established some tangible bounds on the computational feasibility of factoring large numbers. The outcome, using a Cray X-MP computer, was within a range of 7.2 minutes to 32 hours for numbers varying from 55 to 77 digits in length [Ref 17]:

In a separate study by Ronald Rivest [Ref 15], it is proven that with the best algorithm available such as that of a quadratic sieve [Ref 18], a large prime composite integer can be factored with a running time proportional to:

$$
e^{\sqrt{\ln (n) \ln (\ln (n))}}
$$

In the range of interest(approximately 256 bits in length), for k bit number n, a crude approximation is:

$$
5 \times 10^{9+(k / 50)}
$$

Using Sandia's benchmark that a 75 -digit number can be factored in about 1 day [Ref 17] and the formula of Rivest's article [Ref 15], Table 2.5 is derived [Ref 17].

Based on the data above, it is safe to surmise that the problem of factorization of large number will remain insurmountable for a long time given current

Number of digits	Number of operations	Solution time
75	9×10^{12}	1 day
100	2×10^{15}	255 days
125	3×10^{17}	103 years
150	3×10^{19}	9755 years
175	2×10^{21}	70 thousand years
200	1×10^{23}	36 million years

TABLE 2.5: FACTORIZATION TIME WITH SANDIA'S BENCHMARK [REF 17]
knowledge and technology. The exploitation of this problem in the RSA system and the neural network-based system of Chapter IV is hereby justified.

III. HARDWARE DEVELOPMENT OF THE PUBLIC-KEY CRYPTOSYSTEM

The feasibility of most popular public-key systems is heavily dependent upon the possibility of hardware implementation. Although the algorithm is theoretically simple, its software implementation is slow and highly limited to the resolution of the processor. Such problems are not worth tackling when, with the available VLSI technology, hardware implementation is faster and more efficient.

The crux of many public-key cryptosystems hardware rests on the ability to devise a fast exponentiation scheme where the exponent and modulus are extreme in length (greater than 256 bits). From our two sample cryptosystems, Diffie-Hellman and RSA, the fast exponentiation problem is essential in putting the theory to practice. To familiarize the reader with the possibility for hardware implementation of existing public-key cryptosystems, this chapter will develop in detail a hardware scheme for fast exponentiation based the recursive sum of residues algorithm.

A. MODULO EXPONENTIATION USING RECURSIVE SUM OF RESIDUES

Currently the most popular working hardware for the RSA system performs exponentiation by repeated squaring opacations coupled with conditional multiplication. During each square or multiplication stage, modulo reduction is also incorporated so as to maintain a small intermediate result [Ref 19]. The combination of squaring (considered as part of multiplication), multiplication and modulo reduction operations forms the core of fast exponentiation. Currently, there are two categories separating the various methods of implementations:

Figure 3.1: Block Diagram of over all exponentiation unit

1. Multiplication and modulo reduction are done in tandem. As the partial products are formed, a decision based on special algorithms is made on whether to perform a reduction on the product [Ref 19].
2. Multiplication and modulo reduction are done sequentially. The result of the multiplication is first obtained and then fed serially to the modulo reduction unit [Ref 19].

For the purpose of this thesis, only the latter case (2) is considered. The underlying reason behind this choice is simplicity which leads to a modular structure that in turn can easily be implemented in VLSI. Moreover, the first part of this hardware scheme, a serial multiplier, will not be delved into with details due to the abundance of such units already available. This leads us to focus on the hardware implementation of the modulo reduction unit to which the result of the serial multiplier is fed into in accordance to the basic block diagram of Figure 3.1 [Ref 19].

1. Sum of Residues Reduction

Our modulo reduction unit is based on the sum-of-residues reduction method. That is the number, x, reduced by modulus, m, is expressed in the following binary form:

$$
x=\sum_{i=1}^{n} x_{i} 2^{i-1} ; x_{i}=[0,1]
$$

The modulo reduction is

$$
x \bmod m=\left(\sum_{i=1}^{n} x_{i} 2^{i-1}\right) \bmod m
$$

Since modulo reduction is associative

$$
x \bmod m=\left(\sum_{i=1}^{n} x_{i}\left(2^{i-1} \bmod m\right)\right) \bmod m
$$

Summarizing, one performs the reduction as a conditional power of 2 reduced by $\bmod m$ (a residue) and a summation of all the resulting residues (hence sum of residues) [Ref 19].

Example:

modulus m is $7, x=10010 \equiv 18, \mathrm{i}$ initialized to 1 .
Residues are at 2^{1} and 2^{4} due to positions of 1 in 10010. Respectively the residues are $2 \bmod 7$ and $16 \bmod 7$ which are 2 and 2 . Hence $\sum r_{i}=r_{1}+r_{4}=2+2=$ 4.

Table 3.1 summarizes the SOR process for the example which resulted in:

$$
\left(\sum r_{i}\right) \bmod 7=4 \bmod 7=4
$$

Indeed $18 \bmod 7=4$
Given a modulus, residues can be obtained by a look-up table; however, this requires excessive space. Given n as the modulus length, a typical table size is n

shift \times LSB First	\times	residue $2^{i-1} \bmod 7$	$=$ resulting residue
0	\times	$2^{0} \bmod 7=1$	$=0$
1	\times	$2^{1} \bmod 7=2$	$=2$
0	\times	$2^{2} \bmod 7=4$	$=0$
0	\times	$2^{3} \bmod 7=1$	$=0$
1	\times	$2^{4} \bmod 7=2$	$=2$
.	.	residues will repeat	\sum resulting
.	\cdot	$124124 . .$.	residues $=4$
.	.	pattern	

TABLE 3.1: EXAMPLE SUM OF RESIDUES FOR $18 \bmod 7$

iteration	$2 r_{i-1}-m$	$r i=2 r_{i-1}$ or $2 r_{i-1}-m$
1		r_{1} initialized to 1
2	$2 \times 1-7<0$	$2 \times 1=2$
3	$2 \times 2-7<0$	$2 \times 2=4$
4	$2 \times 4-7>0$	$2 \times 4-7=1$
5	$2 \times 1-7<0$	$2 \times 1=2$
.	\cdot	\cdot
.	\cdot	\cdot
.	.	.

TABLE 3.2: EXAMPLE RECURSIVE SOR FOR $18 \bmod 7$
by $2 n$. With n being greater than 256 bits, this would require extremely large data paths, undesirable in silicon implementation [Ref 19]. For this reason, it would be more desirable to calculate the residues as necessary in accordance with the given modulus. Fortunately, there is a simple recursive formula which allows for easy hardware calculation of residues:
ith residues $\equiv r_{i} ; i=2 \ldots n$

$$
r_{i}=\left\{\begin{array}{lll}
2 r_{i-1} & \text { iff } & \left(2 r_{i-1}-m<0\right) \\
2 r_{i-1}-m & \text { iff } & \left(2 r_{i-1}-m \geq 0\right)
\end{array}\right.
$$

r_{1} initialized to 1 [Ref 19]
Taking the previous example from Table 3.1 and incorporating into it the

Modulus in 2's Complement

Figure 3.2: Modulo Reduction Unit
recursive sum of residues method, the result of which is in Table 3.2, indeed the residues are the iterative pattern: $1,2,4,1,2,4,1 \ldots$

A diagram of an architecture using the sum of residues method for modulo reduction is provided in Figure 3.2 [Ref 19] .

Respectively, M and R are two n-bit registers holding ($-m$), the two's complement of the modulus, and r_{i}, the current residue. Initially, the current residue is set to 1 . As the system is clocked, the register is loaded with $2 r_{i}$ or $2 r_{i}-m$, depending on the sign bit of the $2 r_{i}-m$ add. The accumulator sums those residues which are passed by the incoming bits of the serial multiplier's product P. There's an overhead amount of bits which must be taken into acount for the accumulator's size. The necessary overhead bits are given in Figure 3.3 [Ref 19].

Having a sound understanding of the theory behind the architecture in Figure 3.2, the next obstacle that must be cleared is the transformation of the theory to an actual VLSI layout. With some intuition and basic knowledge of logic circuit, a block diagram complete with logic units, inputs and outputs is developed and shown

Figure 3.3: Overhead Vs Input Bit
in Figure 3.4.
A few details in the transformation between Figures 3.2 and 3.4 are hereby stated for clarification. Whereas in Figure 3.2 a multiplier was used to obtain the correct residue for the accumulator, in the final design, a multiplexer is chosen to perform the multiplication. Also the left shift logical to obtain $2 r_{i}$ is finalized without a shift register but rather by hardwiring the outputs of the residues directly to the inputs of the first adder.

From a VLSI perspective of Figure 3.4, one sees that it is beneficial to devise a modular unit (shaded region) which could easily be assembled together to form a larger complete reduction unit satisfying the length of the modulus. To realize a single modular unit, only 2 master-slave flip flop's (MSFF), 2 combinational adders and $22: 1$ multiplexers are needed. The control for this unit alone and for the rest of the modular reduction device is a couple of simple two-phase clocks. The simplicity of this modular scheme is attractive. However, the cost is in silicon area and speed as we will see.

Figure 3.4: Block Diagram of 4-Bit SOR with Logic Units

Figure 3.5: MSFF Circuit Diagram

B. VLSI LAYOUT DEVELOPMENT

1. Master Slave Flip Flop

The desire for a simple control method, a two-phase clock, necessitates the use of a master-slave flip flop instead of a direct latch. In the first stage where the residues are computed, the adder uses the output of the flip flop (slave) while the output of the hardwired shift left $2 r_{i}$ is transferred to the input end of the flip flop(master). The same requirements for the flip flop are imposed in the accumulator unit where the flip flop must act as both the accumulator's adder output register (master) as well as accumulated input to the adder.

The chosen circuit for our master-slave flip flop is shown in Figure 3.5 [Ref 20].

Analysis of Figure 3.5 shows two cascading 2-phase static latch. This structure is sound and efficient to implement. A minor problem of clock race is possible when clock is high and clockbar overlaps it causing a tendency for the input and feedback signal to contest with the new value on the flip flop input [Ref 20]. Fortunately, for our purpose; this problem did not manifest itself as the feedback transistor is designed to "trickle": transistor β is low [Ref 20]. The VLSI layout for the master-

Figure 3.6: MSFF Layout
slave flip flop is given in Figure 3.6. It should be preempted that the design will be slightly alter later on in order to conform to the overall modularity of the entire modulo reduction unit.

Silicon space for the MSFF is $64 \times 135 \mu \mathrm{~m}^{2}$. SPICE analysis [Ref 21] on the layout determined a delay from input to output to be 10 ns . The maximum speed of operation for the MSFF is 100 Mhz . Since the input and output of the MSFF is inherent only to the single module, no effect from the other modules are of concern.

2. Adder

Due to the modularity of the design, the simplest approach is taken in the development of the two adders in the module. The chosen unit for both adders is a combinational adder with approximately equal sum and carry delays. Carries are allowed to ripple through the necessary modules. This choice is made mainly to conform to the modular structure. The ripple carry design does cost much in speed. The circuit diagram for the adder is shown in Figure 3.7 [Ref 20]. The appropriate

Figure 3.7: Adder Circuit

Figure 3.8: Adder Layout
layout follows in Figure 3.8.
The adder layout sizes up to $73 \times 145 \mu \mathrm{~m}^{2}$. SPICE analysis Ref 21] of a single adder unit showed that the sum and carry delays are $4.8 n s$ and $4.5 n s$ respectively. From this result, intuition dictates that when the unit is put together for a larger modulus, the carrychain will be the limiting parameter for speed of operation.

Figure 3.9: MUX Function Block Circuit Diagram

3. Multiplexer

The reduction unit calls for the use of two $2: 1$ mux's per bit of modulus. The first takes its select input from the sign bit of the sum of the first adder and output $2 r_{i}$ or $2 r_{i}-m$ as appropriate. The second simply acts as a multiplier with its select input as the single bit shifted in from the output of the serial multiplier and outputs the residues if the select is 1 and 0 if select is 0 . In short it acts as a single bit multiplier. For our multiplexer, a function block design is used [Ref 22]. The circuit is shown in Figure 3.9 [Ref 22].

This is an NMOS device in which only one of the two inputs a, b is passed to the output depending on whether NMOS-1 or NMOS-2 is turned on. Only one NMOS gate can turn on at the time because the inputs to their gates are complements. Intuitively, the select input of the multiplexer is the input to the two gates. The VLSI layout is shown in Figure 3.10.

Because of the simplicity of the circuit, the only delay is one transistor gate. Compared to the delay of the adder or flip flop, this is negligible and will not be delved into. The size of the layout is $32 \times 33 \mu \mathrm{~m}^{2}$.

Figure 3.10: Layout of MUX

4. Modulo Reduction Unit

Having all the necessary components, the entire modulo reduction unit can now be developed. As previously mentioned, a "modular" design is implemented in this thesis so that, depending on the size of the modulus, the entire unit can be constructed by simply cascading the same module together n times (modulus is n-bit in length.) Bearing this in mind, the layout for the module as well as a 4 -bit modulus modulo reduction unit is shown in Figure 3.11.

The foremost significance of the VLSI scheme for the modulo reduction unit is that it is simple in implementation and, above all, it works. Using a CFL program [Ref 3], the module can easily be generated into an n bit unit. Experimentally, RNL simulations were performed [Ref 3]. The results, which are enclosed in Appendix B, testify strongly on behalf of the unit's functional capability. However, as to the efficiency in area and speed, the empirical data is debatable in support of different individual's needs.

Since the modulo reduction unit is designed mainly for modularity, the size of the entire structure grows geometrically with the number of bit that the unit is designed for. Each module per bit is sized at $73 \times 672 \mu \mathrm{~m}^{2}$. If n is the number of bits required to be modulo reduced, then n modules are needed. Disregarding the

Figure 3.11: Layout of 4-bit Modulo Reduction Unit

Figure 3.12: Size of Modulo Reduction Unit

Figure 3.13: Speed Performance of Modulo Reduction Unit From SPICE
minimal effect of overhead bits (Figure 3.3), the size of a modulo reduction unit for n-bit modulus is $n \times 49056 \mu \mathrm{~m}^{2}$. Figure 3.12 is a plot relating the size of the unit to the number of bits.

In regard to speed consideration, experimental data found the unit's carrychain to be the limiting factor. After SPICE simulation [Ref 21], Figure 3.13 was obtained to gauge the speed performance of the modulo reduction unit.

Since the carrychain imposes the speed limit in this design, intuitively, one can incorporate speed saving techniques such as various carry-look-ahead adders; however, this will alter the modularity structure. This is beyond the scope of the thesis but remains a viable avenue for speed improvement at the expense of silicon space.

In summary, this chapter has provided the basic hardware building blocks for a fast exponentiation scheme with specific details on a modulo reduction unit. From this foundation, an RSA hardware implementation can easily be conceived. Such an implementation is necessary in many applications, one of which is the subject of the next chapter: a novel approach to PKS using neural networks. As will be explained in the following chapter, the hardware technology developed here will be a small integral part of a "pseudo" public-key cryptosystem based on neural networks.

IV. A NEURAL NETWORK-BASED PUBLIC-KEY CRYPTOSYSTEM

Since all cryptosystems make use of some form of mapping functions to transform data to unintelligible code and then recover it, a neural network - inherently an excellent non-linear mapping technique - provides a viable choice for a medium from which a possible cryptosystem can be based upon. In examining this possibility, this chapter presents an adaptation of the back-propagation neural network to a "pseudo" public-key arrangement. Strictly as an initial research, a simple requirement of encrypting and decrypting a number representing any character or data is fulfilled via the network. Following examinations of the network, a key management system is then devised. As data are fed to the network in simulation of encrypting and decrypting, the problems and solutions to the system are discussed. Finally, a complete top-down block diagram of an entire cryptosystem based on the neural network of this study is proposed.

A. EXPERIMENTS IMPLEMENTING A NEURAL NETWORK IN CRYPTOSYSTEMS

The neural network-based cryptosystem to be designed, a cipher system, requires two basic elements: a key management scheme and an algorithm for two-way mapping a set of numbers representing data. In this respect, it is fundamentally not far different than other cryptosystems. The differences surface only in the implementation of mapping. Whereas all existing system such as DES [Ref 23], once implemented in hardware, maps in a set pattern, a neural network can change its mapping any time by simply retraining its weights to new data. As it turns out, this
deviation from the norm is advantageous since it adds an extra level of protection. Namely, if the system is compromised, retraining and obtainment of new weights are neither a difficult nor time-consuming task [Ref 24, 25].

Before the network is presented, some background is in order. The system of this study is designed to map up to a set of 45 characters for encryption and decryption. Figure 4.1 is a block diagram of the system. From Figure 4.2 [Ref 26], the two networks for encryption and decryption are identical systems; they are both back-propagation networks composed of 4 inputs, 1 output, and three hidden layers of various sizes.

Prior to proceeding with the explanations of Figure 4.1, it is stressed that this system is based mainly on the RSA system. As such, it simply takes a number, encrypts it to another number and decrypts it back. Like RSA, this is all the neural network is set up to do. For simplicity, this number represents a particular character; however, the relationship between the number and character is not explored in detail because this is a subject outside of the focus of this thesis. Furthermore, the input to the network of this research is only 16 bit in length. Again this is chosen for simplicity and clarity in an example system. It is not chosen for security. Like RSA in which system security rests on the key being numbers greater than 256 bit, the security of this system also depends upon the range of the input being greater than 256 bit. In fact, with the input being only 16 bit long, the system can be compromised within nanoseconds. However, successful cryptoanalysis of 256 -bit inputs will be shown in Section 4.D. 1 to take trillion of milleniums. So in order to apply this system to realworld application, it is preempted that the input range should be increased and the assignment of a number to character be done separately so as to maximize security.

To clarify Figures 4.1 and 4.2 , in order to encrypt, a 16 -bit number representing a character is partitioned into 4 segments so as to provide the 44 -bit inputs to the

Example of Encrypt/Decrypt of Character 2

Result $\left.\mathrm{X}_{\mathrm{s}}=\left[\begin{array}{lll}4 & 7 & \mathrm{~A}\end{array}\right]=\mathrm{B}\right] \rightarrow$ Character 2

Note: Message M can only be within certain range of number which Δ oricinally used to tratin the oncrypt network. Hence the range of 1 muat be sent separately ria a separate P.I.S. (RSA).

$$
\begin{array}{l|l}
\text { Send Range of } \mathbf{M} & \text { Non Secure } \\
\text { Using RSA etc... }
\end{array}
$$

Figure 4.1: Neural Network As A Cryptosystem Block Diagram

Figure 4.2: Back-Propagation Network For Encryption and Decryption
encryption network, the output of which is a single 16 -bit number different than that of the original input. These 44 -bit inputs along with their corresponding 16 -bit output are first fed to the network to train the weights. Once trained, the weights of the encryption unit would have converged to values such that when these converged weights are set as constants, the same 44 -bit inputs used for training will provide an actual output that can be rounded to the desired output used in training. For example, if the desired output is 1256 then the actual output must be between 1255.5 and 1256.5 so that rounding to the nearest integer would yield 1256.

Naturally, for a system encrypting up to 45 separate characters, the corresponding training sets will be 45 input/ouput pairs. Basically, this is how the network is trained and utilized for encryption. It should be noted that whether the input/output pairs are linearly related or not, the weights should converge and accommodate the required mapping function.

For decryption, the same type of network, training and mapping scheme will be used, only this time the recovery of the original data is essential. Intuitively, the
input of the decryption unit is the 16 -bit output of the encryption network. To keep the structures of the encryption and decryption networks identical, the encryption output must be partitioned into 44 -bit segments before it becomes inputs to be decrypted. The desired output of the decryption network must then be the original 16 bit input of the encryption network. To clarify the process, the following example is offered.

Example A:

Given a single processing element with 4 inputs and one output.
The element's function is $f(\Sigma)=\sum$;
The four input x 's $=[12 A 6]_{16} ;$ output $=12599 \equiv 3137_{16}$
The four converged encryption weights are found to be [771056501900] such that

$$
1(77)+2(\mathbf{1 0 5 6})+10(501)+6(900)=12599
$$

The encryption weights are thus : [771056 501 900].
Since the encrypted output is 3137_{16}, the decryption input is $\left.\left[\begin{array}{lll}3 & 1 & 3\end{array}\right]\right]_{16}$
The four converged decryption weights are found to be [29066997121] such that

$$
3(\mathbf{2 9 0})+1(66)+3(997)+7(\mathbf{1 2 1})=4774=12 A 6_{16}
$$

The decryption weights are thus : 29066997121.
Based on the example, a training set of several encryption and corresponding decryption numbers can be randomly picked to represent any character. A typical training set for 28 characters, the upper case alphabet with comma and space, is shown in Table 4.1.

Encryption \Rightarrow			\Longleftarrow Decryption		
Text Character	Hex Rep	Dec Rep \rightarrow	\leftarrow Encrypted Character	Hex Rep	Dec Rep
A	12AC	04780	R	321C	12828
B	134E	04942	N	981B	38939
C	214B	08523	P	A 235	41525
D	2698	09880	S	425A	16986
E	35B7	13751	Q	6533	25907
F	538A	21386	0	A159	41305
G	6942	26946	L	8731	34609
H	661B	26139	D	2698	09880
I	728D	29325	M	9137	37175
J	7546	30022	H	661B	26139
K	811A	33050	B	134E	04942
L	8731	34609	J	7546	30022
M	9137	37175	C	214B	08523
N	981B	38939	F	538A	21386
0	A159	41305	A	12AC	04780
P	A 235	41525	G	6942	26946
Q	6533	25907	K	811A	33050
R	321C	12828	I	728D	29325
S	425A	16986	E	35B7	13751
T	B366	45926	Z	F553	62803
U	B129	45353	Y	EA54	59988
V	C568	50536	space	0BCA	03018
W	D346	54086	U	B129	45353
X	D351	54097	W	D346	54086
Y	EA54	59988	V	C568	50536
Z	F553	62803	comma	092D	02445
space	0BCA	03018	X	D351	54097
comma	098D	02445	T	B366	45926

TABLE 4.1: EXAMPLE TRAINING SET

Notably, the assignment scheme of Table 4.1 is monoalphabetic. This is chosen strictly for simplicity, not security. The focus of of the neural network is to map a number to another then recover it. How the number might represent a character is entirely another subject in cryptography. In light of this, using training sets similar to Table 4.1, experiments were next conducted to support the proposed theory of using neural networks for a cryptosystem.

B. EXPERIMENTAL RESULTS AND OBSERVATIONS

In order to accommodate the mapping scheme for the proposed cryptosystem, a series of experiments designed to gauge the performance of the back-propagation network were carried out. The primary goal of the experiments is the development of an optimal network based on several parameters. Information such as training time, error tolerance, range of input numbers, network sizes and their interdependence are of primary interest in building a working example network for the cryptosystem. In accomplishing the desired goal, the chosen back-propagation network consists of 4 inputs, 1 output and 3 hidden layers of various sizes. The network is built and simulated using the Neuralware software package [Ref 26] implemented in an IBM ' $486,50 \mathrm{MHz}, 16$ Mbytes.

Table 4.2 provides the first set of results which are intended to show the relationship between convergence error and training time. For the experiment, a set of 45 training input/output pairs (45 characters of NTP) along with 4 bit per input (16 bit overall since there are 4 inputs) were used. Error is measured in root mean squared values (RMS), a common statistical method of error estimation which is employed by Neuralware. Training time is compared by number of iterations, a method of measurement used in Neuralware. It should be noted that time of iterations varies for different networks. The larger the network, the time per iteration

Number of Elements per Hidden Layer	Iterations \rightarrow	RMS Error	Iterations \rightarrow	RMS Error
5	2500	0.6	250000	0.5
10	73000	0.0025	300000	0.002
15	70000	0.002	350000	0.00006
20	124500	0.0005	270500	0.0001
25	115570	0.000085	340000	0.000017

TABLE 4.2: TRAINING TIME VS ERROR RELATIONSHIP
increases proportionally.
Conclusions drawn from Table 4.2 concern primarily training time and error. Comparing the error with iterations to the error, one noted that up to the first set of iterations, the errors decreased significantly for all networks. After this, the error goes down significantly less even for a greater increase in iterations. This shows that after a certain barrier, training of all networks follows the law of diminishing return wherein the error decreases minimally despite greater increase in training time. Eventually, when the error has reached its minimum, no amount of training time will help. This behavior is typical of all neural networks [Ref 24, 25]. After this first observation, another set of experiments were run and their results are summarized in Table 4.3. For this experiment, the iterations to convergence were set to 3.5×10^{5} iterations where it was determined that the error was at its minimum for all tested networks (weights have converged to optimal values). The inputs again are 4 bit each and 45 input/output pairs were used as training sets.

Clearly from Table 4.3, given the same set of input/ouput, the larger network results in the least error at final convergence. This is due to the larger amount of processing elements and weights (memory) available to accommodate the necessary mapping patterns.

The final experiment intends to formulate the interdependence between network

Elements/hidden layer	RMS error
5	0.2109
10	7.835×10^{-4}
15	3.0836×10^{-5}
20	2.492×10^{-5}
25	1.684×10^{-5}

TABLE 4.3: RELATIONSHIP BETWEEN NETWORK SIZE AND ERROR
size, iterations to convergence, and input size. The results are depicted in Figure 4.3.
The conclusions which can be drawn from Figure 4.3 are:

- In regards to the range of inputs, as the number of bits per input increases, the training time increases. Theoretically, this trend can be attributed to the weights having to accommodate mappings of larger number to smaller ones as well as the reverse. Namely, as a set of small and large inputs maps to larger and smaller outputs respectively, the weights have to be small as well as large if there are not enough weights. This may lead to non-convergence as they can not be both. This is seen in the extremely high increase in training time with the smaller size networks. As the network grows, there are more weights to map thus there is less strain on the system causing training time to decrease.
- In regards to the number of input/output pairs to be mapped, as the training pairs increased to 45 (number of characters in NTP set), the iterations to convergence also increased. This is easily explained by an analogy to the human brain which is the structure emulated by neural networks. When there is more information to learn, the brain labors to maximum capacity until its cells are depleted. In the case of neural networks, as the size of the network is exceeded by the information memory demands, the iterations increase with approximately no learning. A barrier is reached until more neurons are available.

Figure 4.3: Relationship between Network Size, Iterations to Convergence and Input Size

- In regards to the size of the network, the relationship to input/output as well as range of inputs are already described in observations of Table 4.2 and 4.3. One more observation is added here in that as network size is enlarged for more training input or input size, the training time increased. Mathematically this makes sense since there are more weights and neurons (memory) to update. Each iteration now takes longer to complete.

After thorough exploration of empirical data, the final conclusion is that there exists a network for the proposed cryptosystem. And it works. After several trials, the optimal network for this paper's system is found to consist of a 4 bit per input, 4 inputs, 1 output, 3 hidden layers, 25 elements per hidden layer, with 45 sets of input/output traing pairs. This specific network is used in a conclusive example in the next section.

C. AN IN-DEPTH EXAMPLE

This example is based on Table 4.1 which in turn is based on the Naval Tactical Publication coding scheme wherein a character is mapped unto another: $A \leftrightarrow R$, $\mathrm{B} \leftrightarrow \mathrm{N} . .$. This scheme is chosen for clarity in that an encrypted text will also be a string of characters. In reality, however, since the characters are coded by a number, the encrypted text need not be a number representing another character. For instance, character ' A ' encrypts to $5 B C F_{16}$ where $5 B C F_{16}$ in this case does not represent a character in Table 4.1.

This example employs a monoalphabetic substitution scheme to assign a number to a character. In this respect, this system is vulnerable to single-letter frequency analysis and is therefore easy to break [Ref 27]. However, if each character is coded by multiple numbers utilizing schemes such as homophonic or polyalphabetic substitution (Beale or Vignère and Beaufort cipher), the safety margin would greatly
increase [Ref 27]. Additionally, for real-world application, the input range must be raised from 16 bit to greater than 256 bit.

As stated in the previous section, this system, based on RSA, is concerned only with two-way mapping a number to another. Bearing this in mind, this section is intended only as a pedagogical example of how such a scheme could be implemented so as to be able to actually encrypt and decrypt a plaintext message. In reality, for complete security, a separate scheme of assigning numbers to characters must be chosen to defeat the frequency of letters in plaintext. If interested, the reader is referred to reference 27 for the assignment of numbers to characters. Moreover, the range of the network's input must be greater than 256 bit. Having established the objective of this example, illustrations of the system is hereby offered. The following plaintext message is encrypted and decrypted using the system of Figure 4.1.

Plaintext: FIND ME COMPLETE CHAOS AṆD I WILL SHOW YOU SCI-

ENCE

Decimal coded text and encrypted text:

Resulting encrypted text:

OMFSXCQXPACGJQZQXPDRAEXRFSXMXUMJJXXEDAUXVAYXEPMQFPQ

Additionally, given the monoalphabetic scheme chosen here, in order to guard against the problem of frequent repetition in the english vocabulary such as the word the, double patterns $l l, n n, t t$ which can simplify cryptoanalysis, random or strategically placed noise can be added to the encryption via some algorithm. Remember that since one is using only 28 numbers out of 2^{16} here, there are multitudes of numbers left to insert into the above patterns as noise bytes. In this specific example, the noise is inserted by human intuition and is shown as asterisk (*) signifying any number not used in coding the characters.

An example of encrypted text with noise inserted:

OMFS*XCQX*PACG*JQZ*QXQDR*AEX*RFSXMXU*MJ**JXE*DAUXV*AYXEPM*QFPQ

With the noise option, one must have a scheme to filter the noise out prior to entering the decryption network. The decryption network simply recover the plaintext from the encrypted text as previously discussed. Both the encryption and decryption networks is subjected to the following parameters:

- Momentum coefficient $=0.300$.
- Learning coefficient $=0.500$.
- Function \equiv Tanh.
- Learning rule \equiv Delta-rule.
- Size $\equiv 4$ inputs, 1 output, 3 hidden layers, 25 elements/layer.
- The time to minimum acceptable error was approximately 8 hours.

The two networks' (encryption and decryption) data employed for this example are included in Appendix C.

Clearly, the basis of how to encrypt and decrypt via a neural network is established. Based on knowledge of cryptography, the concept of a key must now be incorporated.

D. KEY MANAGEMENT

Up until present, the method of mapping has been discussed without any mentioning of a key. In reality, the key evolves from the actual training process. Namely, once the training is done, both for encryption and decryption, the converged weights are the keys. Since different training sets are used (inverse sets), a key for encryption and another for decryption are required. The keys will change when the network switch mapping function via new training sets.

For our example of only one training input/ouput pair and one processing element in Section A (Example A), the keys are [77 1056501 900] for encryption and [290 66997 121] for decryption. The fact that two keys must exist is perhaps clearer now with the example; however, the fact that this is a one-way scheme only remains murky. Let's clarify this further. For a specific set of encryption/decryption key that
party A obtains from training, party B given the encryption key, can encrypt while A can decrypt using decryption key. Unless B somehow also obtain the decryption key (the only safe way to do this is through a secured channel) there is no way for A to encrypt to B unless B had come up with separate encrypt/decrypt keys of his own and sent A the encryption key. There is no restriction against both parties using the same encryption/decryption keys that only one has derived, provided the system is a secret-key type where the keys can be distributed through safe channels. In this respect, there is little to gain from a neural network as it is nothing more than another mapping method. But there is much more to the versatility of neural network which should be exploited.

In the key management scheme thus far mentioned, only one party needs to train the network and then passes the weights as keys for encrypt and decrypt to his or her counterpart. However, if both parties were to obtain separate training sets and thus keys, only the encryption keys need to be exchanged. In this respect, there exists a "pseudo" public-key scheme which can be exploited since the decryption key requires no exchange. This possibility is hereby explored.

1. A Proposed Pseudo Public-Key Cryptosystem Using A Neural Network

Irrefutably in cryptography, the possibility of a pseudo-public-key implementation of a neural network merits this paper further examination. Currently, the designed networks mentioned that the keys, the encryption/decryption weights, can be passed through a secured channel. If a cryptoanalyst has the keys and the same network, he has broken all codes. Now the assumption is lifted. This research postulates that if both parties develop their own set of keys, the encryption keys can be exchanged through any public channel(Figure 4.1). A cryptoanalyst having pos-
session of the encryption key, a network, and encrypted data will face an enormous obstacle in breaking the code: time (in terms of centuries.)

From the forementioned implementation, one recalls that only the encryption key needs to be exchanged if both parties train on separate data and each obtains his or her own keys. The decryption key is never divulged. Given the encryption key $E_{\text {encr }}$ and the encrypted message Y a cryptoanalyst must solve an excessively difficult equation to recover the original input X .

Example D:

Using data from our simple one element one input/output training Example A.
Known to the attacker: Encrypt key ($E_{\text {encr }}$) and encrypted code.

$$
E_{\text {encr }}=\left[\begin{array}{c}
77 \\
1056 \\
501 \\
900
\end{array}\right]
$$

encrypted data $=3137_{16}$
To solve for the original data, he must solve

$$
77 x_{1}+1056 x_{2}+501 x_{3}+900 x_{4}=3137_{16}
$$

with x_{i} being 4 bit,
which is one equation and four unknown.
The above example is done on a simple single processing element model with a simple linear function. Given a multilayer network such as the back-propagation type with non-linear processing elements, even if the attacker knows the network, the problem mathematically increases in difficulty since the number of elements grows and thus the amount of required factorizations grows.

Even with a simple one cell example, for a crude cryptoanalysis method, one must solve the equation by trying 2^{16} combination of inputs to break one character.

Using a crude equation for Table 4.4:
Time in seconds $=2^{\text {Number of bits loops }\left(10^{-9}\right.}$ sec computer/loop) 1000 computers

Number of input bits per x_{i}	Time
4 (this report's element)	0.07 ns
8	4.3 ms
16	213 days
32	1.08×10^{17} centuries
64	3.67×10^{55} centuries

TABLE 4.4: EXHAUSTIVE SEARCH CRYPTOANALYSIS TIME FOR A SINGLE CELL

On the average it will take less then all combinations as it is probable that the solution can come anywhere in the search. An exhaustive search of 2^{16} loops for 2^{16} combinations poses little problem with the power of the computer but let's say one increases the same simple single layer input and output to a 32 -bit, 64 -bit, 128 -bit, or 256 -bit input. Herein lies the basis behind the security of this system: a large range for the input of the network. Whereas up until now, only 16-bit inputs were used in a simple example, when this range is increased to 256 bit, the difficulty of working with such a large number renders any cryptoanalysis infeasible. Using an exhaustive search, Table 4.4 shows the amount of total possible time it would take to break one character given 1000 computers operating at 1 ns per loop operation (a very generous, fast time).

As with all cryptosystems, the time above can be minimized further if the system is susceptible to the problem of predictable frequency in the vocabulary. Namely, when the number representing trends such as 'the', ' a ', space, double letters ${ }^{6} 11^{6}$, ' $n n^{6}$ exists, estimation of those characters are made easier. With this system, there exists a countermeasure in that one could use numbers not mapped to inject noise into the transmission thus breaking up any patterns. Here, since only 45 numbers are needed to represent 45 characters, there are $2^{16}-45$ random numbers left
to be used by some algorithm which would insert them into common words such as those mentioned above. This possibility was shown earlier in the in-depth example of Section C.

With the multi-element structure of the back-propagation network, the cryptoanalysis problem is exponentially greater with increase in number of network elements. Undoubtedly, the insurmountable time can be decreased given the luck factor in the probabilities and in due time further development in mathematics can solve in feasible time the NP complete problem. Nevertheless, at this date, the postulate is made that this is a very safe public-key cryptosystem.

2. Justification of the "Pseudo" Prefix

Ironically, the restrictions which necessitate the prefix "pseudo" for the system arise from the same attributes that make the system safe. Given a range of bits of input x, one cannot use all the possible combinations to train the network. For example, if each x was 64 bits long, one faces $2^{4 \times 64}=2^{256}$ possible combinations. In order to encrypt anything between 0 and 2^{256}, all 2^{256} numbers must be matched to a unique y and trained to the network. This is comparable to the problem of the cryptoanalyst; it would take trillions of milleniums - not feasible.

The solution to this problem is avoidance. One needs only to train a certain range of number corresponding to the number of characters needed to be encrypted. For the NTP character set in this proposed system, one needs only a range of 45 out of numbers 2^{16} possible. However, both the encrypter and decrypter must know this range. How is this range to be kept a secret and still be passed to both parties? In order to make this neural network completely public-key, another PKS system is required to pass this range. It is suggested that the already popular Rivest Shamir Adleman (RSA) PKS system mentioned in Chapter II and III be used to pass this
range.
In summary, key management involves the direct public disclosure of the encryption weights and the indirect public disclosure of the range of inputs via the RSA system. This leads to the question of why not use RSA completely and not be bothered with the neural network. The answer is that RSA is traditionally slower compared to neural networks (after training) and since the range of numbers used in encryption/decryption needs to be exchange only once prior to utilizing the system, one can afford to use RSA whereas for text encryption, a drawn-out repetitive realtime process, a neural network is much more efficient [Ref 12, 24].

E. PROBLEMS OF A NEURAL NETWORK AS A CRYPTOSYSTEM AND PROPOSED SOLUTIONS

The two potentially detrimental problems with the neural network scheme are that of the network weights not converging to an acceptable error for some nonlinear training sets (non-convergence) and the mapping not guaranteed to be one to one (aliasing). Fortunately, the intrinsic versatility of neural networks is such that solutions to these problems exist.

The more serious of the two problems, non-convergence, can be easily illustrated by referring back to the one processing cell, one input/output training set example. With simply one cell, an addition of a second input/ouput pair - if not linearly related to the first pair - can cause the cell weights not to converge to acceptable errors; namely, there are no possible set of weights which will accommodate the correct outputs for both inputs. For example, the input/ouput pair $[21 B 6]_{16}$ and $[0 E F 3]_{16}$ is added to example 4.A. Using the old convergence weight for the original input/output, the actual output of the second pair is:

$$
2(77)+1(1056)+11(501)+6(900)=12,121=2 E 59_{16}
$$

Clearly this is not the desired output for the second input. Hence, if one was to use the two data set above to train the single cell, the weights would not converge. One is then left with some restriction as to how to choose training set (mapping function). This restriction, can be easily exploited by a cryptoanalyst to break the system as he or she now knows that only certain mapping function is possible given knowledge of the system. Luckily, this restriction can be lifted with the back-propagation network used in this research.

As previously mentioned in Section A, a back-propagation network is an excellent mapping method of non-linear functions. Relying on this property, the training sets for encryption and decryption do not need to be linearly related. The more cells one adds to the network, the more non-linear functions can be mapped. Theoretically, with enough cells per layers, the weights will converge to acceptable errors given just any training data [Ref 24]. For the non-convergence example above, indeed the back-propagation network did prove to be the solution.

Additionally for public-key cryptography, one must bear in mind that the training data for encryption and decryption are related. For it to work, the weights of both encryption and decryption networks must converge. A training set that converges for encryption but its inverse training set does not yield converged weights for the decryption network is otherwise of no use in cryptography. From experimental data of the proposed 45 character encryption/decryption scheme, using the back-propagation system, problems of convergence were sometimes encountered. The reader is referred back to the experimental Section B where it was shown that when non-convergence does surface, the solution is to add more cells.

Apart from non-convergence, the second problem, aliasing, proved less serious but'still needed to be dealt with. Aliasing occurs when, given a converged weights, two or more sets of inputs map to the same output. This nuisance can be attributed
to the same problem which necessitated the "pseudo" prefix. Since one trains only a range of inputs within the vast possibility ($>2^{256}$), the unused inputs could by chance map to one of the same chosen outputs.

Example E:

Again reverting back to the one cell, one input/output training set of Example A in Section A, an input of [12 A6] $]_{16}$ along with encryption weights of $[771056501900]$ yielded an encrypted code of $12599=3137_{16}$.

Let's use an input of $[714 A]_{16}$ and the same converged weights. The encrypted code for this input will be

$$
7(77)+1(1056)+4(501)+10(900)=12599=3137_{16}
$$

which is the same output with the original input; hence aliasing has occured.
Clearly aliasing is a theoretical possibility and thus a problem; however, in reality it can be easily be avoided by making sure one uses only the trained input/output pairs for encryption and decryption. This way, one knows exactly that a given encryption output should map back to the desired encryption input during decryption and not the aliased value. In fact, the alias problem can be exploited to the system's advantage. If certain aliasing problems are adapted intentionally, cryptoanalysis becomes more difficult. As previously explained in the "pseudo" justification section, only the desired parties knows the range of inputs to use whereas others do not. It is essential only to choose exact one-to-one mapping pairs in this range to avoid aliasing. Outside this range, any other inputs can have the aliasing effect, an actual benefit in extra safety.

F. DEVELOPMENT OF A COMPLETE BLOCK-DIAGRAMLEVEL HARDWARE SCHEME USING A NEURAL NETWORK IN PKS

Up until now, most of the basic building blocks of a PKS using neural network have been discussed. Gathering all the essential blocks together, a possible block diagram proposal for an entire cryptosystem is shown in Figure 4.4.

Block by block description of Figure 4.4.

- The only component not yet delved into is the automatic generator of training input/ouput sets. This function can be fulfilled by a linear feedback shift register (LFSR). Given an input polynomial, it is a simple circuit capable of generating a random set of different numbers given. For this study, an LFSR of order 16 is necessary to generate $2^{16}-1$ random numbers for both input/output pairs of encryption. For further insights on LFSR's, consult reference 28. After the input/ouput training sets of encryption is established by the LFSR, the decryption input/ouput training sets must be the inverse; namely ouput and input of encryption become input and input of decryption, respectively.
- Decrypt/encrypt neural net- Both networks are of the back-propagation type composed of 4 inputs, 1 ouput, 3 hidden layers with 25 elements per layer.
- Input Range Exchange- As discussed in Section D.2, the RSA hardware of Chapter III can be used to send the range thus making this a "pseudo" PKS.
- Network Weights- The weights of the neural networks must be able to undergo changes during training and then be set to constants once the the converged weights are obtained via training or received from opposite parties. Simple - latches and switches seem adequate for the task although no detail studies are made.

Figure 4.4: Neural Network in PKS

A working model of a public-key cryptosystem based on neural networks has been designed. It is merely a sample model which can be applied in limited usage; however, the idea behind the system deserves recognition as a worthwhile alternative to PKS.

V. CONCLUSION

This thesis has presented some novel approaches to public-key cryptosystems. The focus was centered on a specific hardware implementation and a completely new angle to PKS using neural networks. In both issues, research produced working models when simulated by computers.

The hardware implementation for a modulo reduction unit in a fast exponentiator - an essential device in the most popular PKS, RSA cryptosystem - was developed based on the sum-of-residues method (SOR). The design is based on the concept of modularity. The modular unit can be conveniently connected to form a fast exponentiator for numbers of any length. The result is a working VLSI layout when simulated by RNL (Appendix C). The efficiency in speed and size, though offered in the study, remains issues to be considered when the unit is to be used in real-world applications. If the speed and size given hereby are acceptable to a certain application then this unit is perhaps a viable alternative to existing technology due to its advantage in modularity.

The second part of this thesis involves the use of neural networks in PKS. To the author's knowledge, the attempt to integrate neural networks into cryptography is a novel idea. Whether it is either original or even revolutionary remains to be seen. That the goal is at all plausible is an unanticipated surprise when the experimental results confirmed it so. This is not to say that plausibility means practicality. So far, all that is proven is that the concept works. Whether the scheme is feasible needs further research.

From data gathered in Tables 2.4 and 4.4, one can conclude that at 256 bit in length for the key in RSA and input in the neural network-based cryptosystem, exhaustive cryptoanalysis faces infeasible time limit. For all practical purpose, requiring trillion of milleniums to break, the system of this thesis is as safe as any current PKS (Table 4.4). Additionally, the most significant advantage in using neural networks in PKS is that there is no need for fast exponentiation which has proven to be slow for large exponents and modulus [Ref 2]. The only necessary operations in a back-propagation network are multiplication, addition and hyperbolic tangent (or other non-linear functions.) The computational feasibility of the neural network scheme, however, is not explored here and is left to follow-on research.

At present, the example system only applies for input ranging 16 bit in length. For the system to be secured, it is suggested that the range be extended to 256 bit. Intuitively, if one single network is to be used to map numbers with 256 bit range, it will have to be large and thus will slow down the system. However, if parallel processing is available and one can afford to design a 256 bit cryptosystem based on 1616 -bit neural networks, the results of this paper will be of value. Furthermore, only the back-propagation network was used in this research. Given the multitudes of network types in various applications, there may exist other schemes capable of using other networks.

This paper is intended to pioneer the idea of neural network in cryptosystem. As such it claims only the initiative in a novel avenue to cryptography. The proposed theory of employing neural networks in cryptography now ends with a call for further research into the efficiency, speed and possibilities of more capable networks. The key to the knowledge gathered so far is that a new method is postulated and there seems to be some merit in that it works with some restrictions. These restrictions may be lifted by further investigation or perhaps there shall come a disproval which
may destroy the entire scheme altogether. Be that as it may, time constraint dictates that this introductory study terminates with many aspirations of fueling follow-on research in this subject.

APPENDIX A

SUPPLEMENTARY PROGRAMS

The following programs are provided to supplement background knowledge in public-key cryptography. In order, they are: fast exponentiation, greatest common divisor, inverse, and factorization. The first three programs are written in C [Ref 2] and run on Unix while factorization is in Matlab code and ran on an IBM '486, $50 \mathrm{MHz}, 16 \mathrm{MB}$.

/*

This program uses the fast exponential algorithm to compute the operation: $a^{\wedge} z \bmod n$. It is intended as an example of software implementation of the RSA public key cryptosystem. */

```
#include <stdio.h>
```

/* The algorithm is contained in the following function to be called when necessary. */

```
int fastexp(a, z, n)
```

int $a, z, n ;$
\{

```
    int x = 1;
    while (z)
```

\{

```
        while (!(z % 2))
        {
            z /= 2;
            a = ((a%n)*(a % n)) %n;
        }
        z--;
        z=((x % n)*(a % n)) % n;
}
    return (x);
}
main()
{
    int a, z, n, t;
    printf("a`z(mod n). Enter a, z, n ");
    scanf("%d %d %d0",&a,&z,&n);
    t= fastexp( a, z, n);
    printf("Result = %d\n", t );
}
```

/*
This program uses Euclid's algorithm to solve for the greatest common denominator (gcd) of two number. Given two input integers, a and n, this program provides their mutual ged. This is intended to be an example for
generating keys in the RSA public key system */

```
#include <stdio.h>
main()
{
    int g[100]; /* Initialize an array for ged */
    int i=1;
    printf ("gcd of a,n. Enter a,n separated by space:");
    scanf ("%d %dO", &g[0], &g[1]);
    while (g[i])
    {
        g[i+1] = g[i-1] % g[i];
        i++;
    }
    printf ("gcd of %d and %d is %d \n",g[0],g[1],g[i-1]);
```

\}
/* This program compute the inverse, x, of a and $n(0<a<n)$ such that $\operatorname{ax}(\bmod n)=1 * /$

```
#include <stdio.h>
```

main()
\{
int $g[100], u[100], v[100] ; / *$ Initialize arrays for indexing */

```
    int i=1; /* Beginning index # of loop */
    int y,n,a; /* Defining input and intermediate var. */
    printf ("inverse of a,n. Enter a,n separated by space: ");
    scanf ("%d %do", &a, &n); /* Read in a and n */
    g[0]= n;
    g[1]=a;
    u[0]=v[1] = 1;
    u[1] = v[0] = 0;
    while (g[i])
    {
        g[i]= u[i] * n + v[i] * a;
        y=g[i-1]/g[i];
        g[i+1] = g[i-1] - y*g[i];
        u[i+1] = u[i-1] - y*u[i];
        v[i+1] = v[i-1] - y*v[i];
        i++;
    }
                                /* Using extension of Euclid's gcd algo */
    if (v[i-1] <= 0)
    {
        printf'("inv of %d and %d is %d \n", a,n,v[i-1]+n);
    }
    else
    {
        printf ("inv of %d and %d is %d \n",a,n,v[i-1]+2*n);
    }
}
```

\% This is a Matlab program designed to factorize a product of two \% primes for the cryptoanalysis of the RSA public-key cryptosystem. \% Intended merely to show the futility of factorizing large numbers, \% it employs a naive exhaustive search method of dividing and \% checking the remainder of the division of the product and every \% possible odd numbers until a factor is found. To use the program, \% simply type rsafac('product of 2 primes').

```
function[x]=rsafac(z); % Enter the product.
w=round(sqrt(z)); % Factor can not be larger than
    % the square root of the product.
```

for $n=1: 2: w \quad$ No need to test even numbers, and
\% limit of search is w .
$\mathrm{v}=\mathrm{z} / \mathrm{n}$; \% Testing by dividing products by
\% odd numbers.
if (rem $(v, 1)==0)$ \% If v is integer then
$x=[n, v] ; \quad \% n$ and v are factors.
n=w; \% Exit loop once factors are found
end
end

APPENDIX B

RNL SIMULATION OF MODULO REDUCTION UNIT

The following examples are indicative of the successful RNL simulation [Ref 3] of the final modulo reduction unit. The unit simulated here is limited to modulo numbes of 4-bit length. The RNL control file, stimulation file for one example are included along with simulation results of 5 modulo operations.

Sample control file for RNL simulation of 5 mod 7 using modulo reduction layout of Figure 3.11.
; The name of this control file for ral is: modi.1
; Simulation for modulo reduction unit of Chapter 3.
; LOAD STANDARD LIBRARY ROUTINES
(load "uwstd.I")
(load "uwsim.I")
; FILE WHICH WILL LOG THE RESULTS
(log-file "modi.rlog")
; READ IN THE BINARY NETWORK FILE
(read-network "mod1")
; DEFINE THE TIME SCALE FOR SIMULATION
(setq incr 90)
; DEFINE INPUT VECTOR IF ANY, standard STYLE
(defvec '(bit state s3 s2 s1 s0))
; DEFINE INPUT VECTOR IF ANY, SINGLE INDEX STYLE DEFINE INPUT VECTOR IF ANY, double index STYLE STANDARD REPORT FORMAT DEFINITION.
(def-report '("response= " cl1 cl2 in i3 i2 i1 (vec state)))
; PLOTFILE SPECIFIED
openplot "mod1.beh"
; LOGIC ANALYZER STYLE OUTPUT FORMAT SELECTION.
(setq lanalyze t)
(wr-format)
; GLITCH DETECTOR SELECTION.
(setq glitch-detect t)
; NODE TRANSIENTS REPORT DEFINITION.
(chflag '(s3 s2 s1 s0))
; TRIGGER CONDITION SET-UP
; ADDITIONAL SIMULATION SET-UP COMMAND LINES.
(printf "Commence simulation...\n")
; SPECIFICATION OF A TIME/BASENAME FILE FOR INCLUSION.
(load "mod1.time")
; ADDITIONAL WRAP-UP COMMAND LINES.
(printf "...completed simulation!\n")
exit
; GEN-CONTROL COMPLETED.
;The following is the stimulation file for the input to the rnl simulation ;above for $5 \bmod 7$.

Sample < >.stim file for $5 \bmod 7:$

```
time_range 0 10
in 0 h O l 2 b 4 ; Note 101 is entered for 5
inn 0 1 0 h 2 l 4 ; Simply inverse of in
cl12 1 0 h 1 2-phase clocks
clln 2 h 0 1 1
cl2 2 h 0 1 1
cl2n 2 1 0 h 1
opt O h O x 1 ; Initializing MUX select
optn 0 1 0 x 1
mO O h O
; 2's complement of 7 is 1001
m1 0 1 0
; Modulo number inputs
m2 0 1 0
m3 0 h 0
s3 0 1 0 x 1 ; Initializing summer
s20 1 0 x 1
s10 l 0 x 1
sỌ O l 0 x 1
i3 0 1 0 x 1 ; Initializing 1st residue to 1
i2 O I 0 x 1
i1 0 h 0 x 1
```

report 10
;The following is the RNL simulation result of stimulation file above ; $5 \bmod 7:$
; 118 nodes, transistors: enh=68 intrinsic=0 p-chan=56 dep=0 ;low-power=0 pullup=0 resistor=0
; Report format of logic analyzer style output
time cl1 cl2 in i3 i2 i1 state(result)

Commence simulation...

9	0	1	1	0	0	1	0000
18	1	0	1	0	0	1	$0001-1 s t$ clk pulse
27	0	1	0	0	1	0	0001
36	1	0	0	0	1	0	$0001-2 n d$ clk pulse
45	0	1	1	1	0	0	0001
54	1	0	1	1	0	0	$0101-3$ rd clk pulse ***
63	0	1	1	0	0	1	0101

* Input is $101=5$ (Note input taken at each rising clock edge.)
** Residues are $1,2,4,1,2,4 \ldots$ for $\bmod 7$.
*** $5 \bmod 7=0101=5$.
;The following is a second RNL simulation result (10 mod 6):
; 118 nodes, transistors: enh=68 intrinsic=0 p-chan=56
; dep $=0$ low-power $=0$ pullup $=0$ resistor $=0$
; Report format of logic analyzer style output time cl1 cl2 in i3 i2 il state(result)

Commence simulation...

| 9 | 0 | 1 | 0 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |l| 0000 |
| :--- |
| 18 |

* Input is $1010=10$.
** Residues are 1,2,4... for mod 7 .
*** $10 \bmod 6=0100=6$.
;Third RNL simulation using 10 mod 7:
; 118 nodes, transistors: enh=68 intrinsic=0 p-chan=56
; dep=0 low-power=0 pullup=0 resistor=0
; Report format of logic analyzer style output
time cl1 cl2 in i3 i2 i1 state(result)

Commence simulation...

* Input is $1010=10$.
** Residues for mod 7 is $1,2,4,1,2,4$...
**10 $\bmod 7=0011=3$.
; Fourth RNL simulation using 11 mod 6.
; 118 nodes, transistors: enh=68 intrinsic=0 p-chan=56
; dep=0 low-power=0 pullup=0 resistor=0
; Report format of logic analyzer style output
time cl1 cl2 in i3 i2 i1 state(result)

Commence simulation...

9	0	1	1		0		0000
18	1	0	1	0	0	1	0001
27	0	1	1	0	1	0	0001
36	1	0	1	0	1	0	0011
45	0	1	0	1	0	0	0011
54	1	0	0		0	0	0011
63	0	1	1	0	1	0	0011
72	1	0	1	0	1	0	0101
81	0	1	1	1	0	0	0101

* input is 1011= 11.
** Residues of mod 6 are $1,2,4,2,4 \ldots$
*** $11 \bmod 6=0101=5$
; Fifth RNL simulation with 17 mod 5
; 118 nodes, transistors: enh=68 intrinsic=0 p-chan=56
; dep=0 low-power=0 pullup=0 resistor=0
; Report format of logic analyzer style output
time cll cl2 in i3 i2 i1 state(result)
* **

Commence simulation...

9	0	1	1	0	0	1	0000
18	1	0	1	0	0	1	$0001-1 s t$ clk pulse

27	0	1	0	0	1		0001
36	1	0	0	0	1	0	0001
45	0	1	0	1	0	0	0001
54	1	0	0	1	0	0	0001
63	0	1	0	0	1	1	0001
72	1	0	0	0	1	1	0001
81	0	1	1	0	0	1	0001
90	1	0	1	0	0	1	0010
99	0	1	1	0	1	0	0010

* Input is 10001= 17.
** Residues of $\bmod 5$ are $1,2,4,3,1,2,4,3 \ldots$
$17 \bmod 5=0010=2$.

APPENDIX C
 SAMPLE NEURAL NETWORK FROM NEURALWARE

The following is data for the encryption and decryption neural network used in Chapter IV in-depth example. The network data is formatted from Neuralware [Ref 26] "annotated" option once convergence is reached. This option piovides all the necessary parameters to reconstruct the network trained by data from Table 4.1. Of the many parameters, those of interest are learning iterations (375642 for encryption and 333877 for decryption), error function (standard \equiv hyperbolic tangent), learning rule (delta-rule), and the processing elements' data. Of the element's data, the error for each element's output was approximately zero once convergence is reached. The weight data are not included other than the number of weights going to each element. The reason for this omission is that it is not pertinent. With the data offered here and Table 4.1, one can reconstruct the encryption and decryption network using Neuralware.

Title: Encryption Network for In--Depth Example

Display Mode: Network
Control Strategy: backprop
375642 Learn
16 Aux 1
0 Recall
0 Aux 2

Type: Hetero-Associative L/R Schedule: backprop 0 Layer 0 Aux 3

L/R Schedule: backprop
Recall Step 1

0	0	0	0
0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000
0	0	0	0
0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000

IO Parameters
Learn Data: File Rand. (Encryption file here) Binary Recall Data: File Seq. (Encryption file here)

Result File: UserIO Program:

I/P Ranges:
O/P Ranges:
I/P Start Col:
O/P Start Col:
MinMax Table 〈sama〉:
Col:
Min: $\quad 0.0000$
Max: 15
Layer: 1
PEs: 1
Spacing: 5
Shape: Square
Scale: 1.00
Offset: 0.00
Init Low: -0. 100 Winner 1: None
PE: Bias

MinMax Table: sama Number of Entries: 5

5

2	3	4	5
1.0000	1.0000	1.0000	2445.0000
11	12	14	$6.28 \mathrm{e}+004$

Wgt Fields: 2
F^{\prime} offset: 0.00
Low Limit: -9999.00
High Limit: 9999.00
Init High: 0.100

Desired Output, Output userio

$$
\begin{array}{ll}
-1.0000, & 1.0000 \\
-0.8000, & 0.8000
\end{array}
$$

1

5

Scale: 1.00 Low Limit: -9999.00
Offset: 0.00 High Limit: 9999.00
Init Low: -0. 100
Winner 1: None
PE: 2
Init High: 0.100

$$
\begin{aligned}
& \text {-0.867 Desired } \\
& \text {-0.867 Transfer }
\end{aligned}
$$

0.000 Error

*** 0 Weights 0.000 Error 0.000 Current Error
*** From here on all error for all PE's are O's.
PE: 3

1.000 Err Factor	-0.800 Desired
-0.800 Sum	-0.800 Transfer

PE: 4
1.000 Err Factor 0.636 Desired
0.636 Sum 0.636 Transfer 0.636 Output

PE: 5
1.000 Err Factor 0.692 Desired
0.692 Sum 0.692 Transfer
0.692 Output

Layer: Hidden1

PEs: 25
Spacing: 5 Shape: Square
Scale: 1.00 Low Limit: -9999.00
Offset: 0.00 High Limit: 9999.00
Init Low: -0.100 Init High: 0.100
Winner 1: None

Wgt Fields: 2
F^{\prime} offset: 0.00

Sum: Sum
Transfer: TanH Output: Direct Error Func: standard Learn: Delta-Rule L/R Schedule: hidden 1 Winner 2: None

L/R Schedule: hiddenl

Recall Step	1	0	0	0	0
Firing Density	100.0000	0.0000	0.0000	0.0000	0.0000
Gain	1.0000	0.0000	0.0000	0.0000	0.0000

Gain	1.0000	0.0000	0.0000	0.0000	0.0000
Learn Step	10000	30000	70000	150000	310000
Coefficient 1	0.3000	0.1800	0.0648	0.0084	0.0001
Coefficient 2	0.3000	0.1800	0.0648	0.0084	0.0001
Coefficient 3	0.1000	0.1000	0.1000	0.1000	0.1000

PE: 6
1.000 Err Factor
0.000 Desired
0.044 Sum
0.044 Transfer
0.044 Output
*** 5 Weights 0.000 Error 0.000 Current Error
*** From here on all weights are 5 and errors are 0.
PE: 7

1.000 Err Factor	0.000 Desired
0.612 Sum	0.546 Transfer

PE: 8

$$
\begin{aligned}
& 1.000 \text { Err Factor } \\
& -0.123 \text { Sum }
\end{aligned}
$$

PE: 9

$$
\begin{aligned}
& \text { 1.000 Err Factor } \\
& 0.500 \text { Sum }
\end{aligned}
$$

PE: 10

$$
\begin{aligned}
& 1.000 \text { Err Factor } \\
& -1.634 \text { Surn }
\end{aligned}
$$

PE: 11
1.000 Err Factor
-0.069 Sum

PE: 12
1.000 Err Factor 0.145 Sum

PE: 13
1.000 Err Factor -0.008 Sum
PE: 14
1.000 Err Factor
-0.305 Sum
PE: 15
1.000 Err Factor -0.045 Sum
PE: 16
1.000 Err Factor -0.376 Sum
PE: 17
1.000 Err Factor -0.037 Sum
PE: 18
1.000 Err Factor -2.242 Sum
PE: 19 1.000 Err Factor 0.023 Sum

PE: 20
1.000 Err Factor.
0.228 Sum

PE: 21
1.000 Err Factor
-2.312 Sum
PE: 22
0.546 Output
0.000 Desired
0.546 Transfer
0.000 Desired
-0.123 Transfer -0.123 Output
0.000 Desired
0.462 Transfer 0.462 Output
0.000 Desired
-0.927 Transfer -0.927 Output
0.000 Desired
-0.069 Transfer $\quad-0.069$ Output
0.000 Desired
0.144 Transfer 0.144 Output
0.000 Desired -
-0.008 Transfer
0.000 Desired
-0.296 Transfer -0.296 Output
0.000 Desired
-0.045 Transfer -0.045 Output
0.000 Desired
-0.359 Transfer -0.359 Output
0.000 Desired
-0.037 Transfer -0.037 Output
0.000 Desired
-0.978 Transfer -0.978 Output
0.000 Desired
0.023 Transfer 0.023 Output
0.000 Desired
0.224 Transfer 0.224 Output
0.000 Desired
-0.981 Transfer $\quad-0.981$ Output

-0.297 Sum
PE: 35
1.000 Err Factor -0.168 Sum
PE: 36
1.000 Err Factor 0.315 Sum

PE: 37
1.000 Err Factor 1. 152 Sum

PE: 38
1.000 Err Factor -0.165 Sum
PE: 39
1.000 Err Factor -1.256 Sum
PE: 40
1.000 Err Factor -0. 520 Sum
PE: 41
1.000 Err Factor
-1.282 Sum
PE: 42
1.000 Err Factor 2.801 Sum

PE: 43
1.000 Err Factor.
0.082 Sum

PE: 44
1.000 Err Factor
-2.658 Sum
PE: 45
1.000 Err Factor 4. 263 Sum

PE: 46
1.000 Err Factor -0.159 Sum
PE: 47
1.000 Err Factor -0.068 Sum
PE: 48
1.000 Err Factor -0.707 Sum
PE: 49
1.000 Err Factor -0.527 Sum
PE: 50
1.000 Err Factor
-3.316 Sum
PE: 51
1.000 Err Factor
-1.019 Sum
PE: 52
1.000 Err Factor 0.934 Sum

PE: 53
-0.288 Transfer
-0.288 Output
0.000 Desired
-0.167 Transfer
-0.167 Output
0.000 Desired
0.305 Transfer
0.305 Output
0.000 Desired
0.818 Transfer
0.818 Output
0.000 Desired
-0.164 Transfer -0.164 Output
0.000 Desired
-0.850 Transfer $\quad-0.850$ Output
0.000 Desired
-0.477 Transfer
0.000 Desired
-0.857 Transfer
-0.857 Output
0.000 Desired
0.993 Transfer. 0.993 Output
0.000 Desired
0.081 Transfer
0.081 Output
0.000 Desired
-0.990 Transfer
-0.990 Output
0.000 Desired
1.000 Transfer
0.000 Desired
-0.158 Transfer
0.000 Desired
-0.068 Transfer
0.000 Desired
-0.609 Transfer
0.000 Desired
-0.483 Transfer
0.000 Desired
-0.997 Transfer
0.000 Desired
-0.770 Transfer
0.000 Desired
0.733 Transfer
-0. 158 Output
-0.068 Output
-0. 609 Output
-0.483 Output
-0.997 Output
-0.770 Output
0.733 Output
1.000 Err Factor
-0.033 Sum
0.000 Desired
-0.033 Transfer
0.000 Desired
-0.992 Transfer -0.992 Output
PE: 55

1.000 Err Factor	0.000 Desired	
0.017 Sum	0.017 Transfer	

Layer: Hidden3
PEs: 25
Wgt Fields: 2
F^{\prime} offset: 0.00
Spacing: 5
Shape: Square
Scale: 1.00
Offset: 0.00
Low Limit: -9999.00
Init Low: -0.100 Init High: 0.100
Winner 1: None
High Limit: 9999.00

R Schedule: hidden3
Recall Step Firing Density Temperature Gain
Gain
Learn Step
Coefficient
Coefficient 2
Coefficient 3
PE: 56

1.000 Err Factor

 0.421 SumPE: 57
1.000 Err Factor $\quad 0.000$ Desired
-0.209 Transfer -0.209 Output
0.000 Desired
0.144 Transfer 0.144 Output
0.000 Desired
-0.138 Transfer -0.138 Output
0.000 Desired
-0.206 Transfer -0.206 Output
0.000 Desired
0.136 Transfer
0.136 Output
0.000 Desired
0.150 Transfer $\quad 0.150$ Output
0.000 Desired
-0.297 Transfer -0.297 Output
0.000 Desired
0.584 Transfer $\quad 0.584$ Output
0.000 Desired
-0.152 Transfer -0.152 Output

PE: 66

1.000	Err Factor $\quad 0.000$ Desired
-0.436	Sum

-0.410 Output
PE: 67
1.000 Err Factor -0.086 Sum
PE: 68
1.000 Err Factor
0.082 Sum
0.000 Desired
0.082 Transfer
0.000 Desired
-0.108 Transfer
0.000 Desired
0.071 Transfer
0.000 Desired
0.179 Transfer
0.000 Desiled
0.229 Transfer
0.000 Desired
-0.239 Transfer
0.000 Desired
0.361 Transfer
0.000 Desired
-0.308 Transfer
0.000 Desired
-0.449 Transfer
0.000 Desired
0.127 Transfer
0.000 Desired
-0.047 Transfer -0.047 Output
0.000 Desired
-0.361 Transfer
0.000 Desired
0.569 Transfer
-0.086 Output
0.082 Output
-0.108 Output
0.071 Output
0.179 Output
0.229 Output
-0.239 Output
0.361 Output
-0.308 Output
-0.449 Output
0.127 Output
-0.361 Output
0.569 Output

Sum: Sum
Transfer: TanH Output: Direct Error Func: standard Learn: Delta-Rule
L/R Schedule: out Winner 2: None

L/R Schedule: out Recall Step Input Clamp
$\begin{array}{rr}1 & 0 \\ 0.0000 & 0.0000\end{array}$
0.0
$\begin{array}{rr}0 & 0 \\ 0.0000 & 0.0000\end{array}$

Firing Density	100.0000	0.0000	0.0000	0.0000	0.0000
Temperature	0.0000	0.0000	0.0000	0.0000	0.0000
Gain	1.0000	0.0000	0.0000	0.0000	0.0000
Gain	1.0000	0.0000	0.0000	0.0000	0.0000
Learn Step	10000	30000	70000	150000	310000
Coefficient 1	0.1500	0.0900	0.0324	0.0042	0.0001
Coefficient 2	0.3000	0.1800	0.0648	0.0084	0.0001
Coefficient 3	0.1000	0.1000	0.1000	0.1000	0.1000
PE: 81					
1.000 Err Fac	Factor	-0.525 Desired			
-0.583 Sum		525 Tran		-0.52	Output
26 Weights	0.000 Error		0.000 Current Error		

Firing Density 100.0000 0.0000 0.0000 0.0000 0.0000
Gain
1.0000
$0.0000 \quad 0.0000$
0.0000
0.0000
$\begin{array}{lllll}1.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000\end{array}$
$1000030000 \quad 70000 \quad 150000310000$
$0.1500 \quad 0.0900 \quad 0.0324 \quad 0.0042 \quad 0.0001$
$\begin{array}{lllll}0.3000 & 0.1800 & 0.0648 & 0.0084 & 0.0001\end{array}$
Coefficient
-0. 525 Desired
-0.525 Transfer -0.525 Output
26 Weights
0.000 Error
0.000 Current Error

Resulting actual output and desired output for encryption after convergence in accordance with Table 4.1 input:

Desired:
12828.000000 38939.000000 41525.000000 16986.000000 25907.000000 41305.000000 34609.000000 9880.000000 37175.000000 26139.000000 4942.000000 30022.000000 8523.000000 21386.000000 4780.000000 26946.000000 33050.000000 29325.000000 13751. 000000 62803.000000 59988.000000 3018.000000 45353.000000 54086.000000 50536.000000 2445.000000 54097.000000 45926.000000

Actual:
12827.522461
38939.464844
41524.664063
16985. 642188
25907. 292969
41304.957031
34609.128906
9880.100586
37175.384375
26138.814453
4942.453223
30021.833984
8523.165039
21385.605469
4779.714844
26946. 346094
33050.152344
29324.822266
13750.862305
62803.332031
59987.847656
3017.878906
45353.355469
54086.285156
50536.437500
2445.414014
54097.246094
45926. 305469

Title: Decryption Network for In--Depth Example of Chapter 4 Display Mode: Network

Type: Hetero-Associative
Display Style: default
Control Strategy: backprop

333877 Learn
16 Aux 1
L/R Schedule: backprop
Recall Step

0 Recall
0 Aux 2

L/R Schedule: backprop
0 Layer
0 Aux 3

Firing Density	100.0000	0.0000	0.0000	0.0000	0.0000
Gain	1.0000	0.0000	0.0000	0.0000	0.0000
Learn Step	5000	0	0	0	0
Coefficient 1	0.9000	0.0000	0.0000	0.0000	0.0000
Coefficient 2	0.6000	0.0000	0.0000	0.0000	0.0000
Coefficient 3	0.0000	0.0000	0.0000	0.0000	0.0000

IO Parameters

Learn Data: File Rand. (decryption file) Binary
Recall Data: File Seq. (decryption)
Result File: Desired Output, Output
UserIO Program: userio

$$
\begin{array}{lll}
\text { I/P Ranges: } & -1.0000, & 1.0000 \\
0 / \mathrm{P} \text { Ranges: } & -0.8000, & 0.8000
\end{array}
$$

I/P Start Col:
O/P Start Col:
MinMax Table <samb>:
Col: 1
Min: $\quad 0.0000$
Max:
Layer: 1

2	3	4	5
1.0000	1.0000	1.0000	2445.0000
11	12	14	$6.28 \mathrm{e}+004$

PEs: 1
Spacing: 5
Shape: Square
Scale: 1.00
Offset: 0.00
Init Low: -0.100
Winner 1: None
Wgt Fields: 2
F^{\prime} offset: 0.00
Low Limit: -9999.00
High Limit: 9999.00
Init High: 0.100
PE: Bias
1.000 Err Factor $\quad 0.000$ Desired
0.000 Sum

0 Weights
Layer: In
PES: 4
Spacing: 5 Shape: Square
Scale: 1.00
Offset: 0.00
Init Low: -0.100
Winner 1: None
PE: 2

$$
\begin{array}{ll}
\text { 1.000 Err Factor } & 0.333 \text { Desired } \\
0.333 \text { Sum } & 0.333 \text { Transfer }
\end{array}
$$

L/R Schedule: (Network) Winner 2: None

Sum: Sum
Transfer: Linear
Output: Direct
Error Func: standard
Learn: --None--
L/R Schedule: (Network)
1.000 Transfer
-247.657 Error
Wgt Fields: 1
F^{\prime} offset: 0.00
Low Limit: -9999.00
High Limit: 9999.00
Init High: 0.100
0.000 Error
*** 0 Weights
*** Repeat for PE's here on, 0 weights, 0 error.
PE: 3

$$
\text { 1.000 Err Factor } \quad-1.000 \text { Desired }
$$

-1.000 Sum -1.000 Transfer
PE: 4
1.000 Err Factor -0.273 Desired
-0.273 Sum
PE: 5

Layer: Hidden 1
PEs: 25
Spacing: 5

Wgt Fields: 2
F^{\prime} offset: 0.00
0.000
-1.000 Output
-0.273 Transfer
-0.273 Output
0.231 Output 0.000 Current Error

Sum: Sum
Transfer: Linear
Output: Direct
Error Func: standard
Learn: --None--
L/R Schedule: (Network) Winner 2: None

Shape: Square
Scale: 1.00 Low Limit: -9999.00
Offset: 0.00 High Limit: 9999.00
Init Low: -0.100 Init High: 0.100 Winner 1: None
L/R Schedule: hidden1
$\begin{array}{lrrrrr}\text { Recall Step } & 1 & 0 & 0 & 0 & 0 \\ \text { Firing Density } & 100.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\ \text { Gain } & 1.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\ \text { Gain } & 1.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\ \text { Learn Step } & 10000 & 30000 & 70000 & 150000 & 310000 \\ \text { Coefficient 1 } & 0.3000 & 0.1500 & 0.0375 & 0.0023 & 0.0000 \\ \text { Coefficient 2 } & 0.3000 & 0.1500 & 0.0375 & 0.0023 & 0.0000 \\ \text { Coefficient 3 } & 0.1000 & 0.1000 & 0.1000 & 0.1000 & 0.1000\end{array}$ PE: 6
1.000 Err Factor 0.000 Desired
1.734 Sum 0.940 Transfer -0.000 Error -0.000 Current Error
*** 5 Weights -0.000 Error
*** Repeat for PE's from here on, 5 weights, nearly 0 error.
PE: 7
1.000 Err Factor 0.000 Desired
-2.111 Sum -0.971 Transfer
PE: 8
1.000 Err Factor -0.297 Sum
PE: 9

1.000 Err Factor	0.000 Desired
0.912 Sum	0.722 Transfer

0.722 Transfer
0.000 Desired
-0.252 Transfer -0.252 Output
0.000 Desired $\quad-0.158$ Output
-0.158 Transfer
0.000 Desired
0.168 Transfer 0.168 Output
0.000 Desired $\quad-0.330$ Output
-0.330 Transfer
0.000 Desired
0.589 Transfer 0.589 Output
0.000 Desired
-0.784 Transfer -0.784 Output
0.000 Desired
-0.212 Transfer -0.212 Output
0.000 Desired
0.903 Transfer 0.903 Output
0.000 Desired
-0.245 Transfer -0.245 Output
1.000 Err Factor
0.158 Sum

PE: 20
1.000 Err Factor
1.666 Sum

PE: 21
1.000 Err Factor
-2.920 Sum
PE: 22
1.000 Err Factor
0.136 Sum

PE: 23
1.000 Err Factor 0.118 Sum

PE: 24
1.000 Err Factor -0.597 Sum
PE: 25
1.000 Err Factor 0.154 Sum

PE: 26
1.000 Err Factor
0.203 Sum

PE: 27
1.000 Err Factor
-1.358 Sum
PE: 28
1.000 Err Factor 0.508 Sum

PE: 29
1.000 Err Factor -1.887 Sum
PE: 30
1.000 Err Factor 0.345 Sum

Layer: Hidden2

PES: 25
Spacing: 5 Shape: Square
Scale: 1.00
Offset: 0.00

Init Low: -0.100 Init High: 0.100
Winner 1: None
Wgt Fields: 2
F^{\prime} offset: 0.00
Low Limit: -9999.00
High Limit: 9999.00

L/R Schedule: hidden2
Recall Step

Recall Step	1	0	0	0	0
Firing Density	100.0000	0.0000	0.0000	0.0000	0.0000
Gain	1.0000	0.0000	0.0000	0.0000	0.0000
Gain Step	1.0000	0.0000	0.0000	0.0000	0.0000
Learn Step	10000	30000	70000	150000	310000
Coefficient 1	0.2500	0.1250	0.0313	0.0020	0.0000
Coefficient 2	0.3000	0.1500	0.0375	0.0023	0.0000
Coefficient 3	0.1000	0.1000	0.1000	0.1000	0.1000

PE: 31

$$
\begin{array}{rr}
1.000 \text { Err Factor } & 0.000 \text { Desired } \\
-4.909 \text { Sum } & -1.000 \text { Transfer }
\end{array}
$$

26 Weights -0.000 Error
Sum: Sum Transfer: TanH Output: Direct Error Func: standard

Learn: Delta-Rule L/R Schedule: hidden2

Winner 2: None

0.000 Desired
0.156 Transfer
0.156 Output
0.000 Desired
0.931 Transfer 0.931 Output

0.000	Desired
-0.994	Transfer

0.000 Desired
0.135 Transfer 0.135 Output
0.000 Desired
0.117 Transfer $\quad 0.117$ Output
0.000 Desired
-0.535 Transfer -0.535 Output
0.000 Desired
0.153 Transfer 0.153 Output
0.000 Desired
0.201 Transfer $\quad 0.201$ Output
0.000 Desired
-0.876 Transfer -0.876 Output
0.000 Desired
0.468 Transfer $\quad 0.468$ Output
0.000 Desired
-0.955 Transfer -0.955 Output
0.000 Desired
0.332 Transfer
0.332 Output
*** Repeat for PE's here on, 26 weights, nearly 0 error. PE: 32
1.000 Err Factor
-1.085 Sum
0.000 Desired
-0.795 Transfer -0.795 Output
0.000 Desired
0.998 Transfer
0.000 Desired
0.998 Transfer 0.998 Output
0.000 Desired
0.392 Transfer 0.392 Output
0.000 Desired
-0.855 Transfer -0.855 Output
0.000 Desired
0.949 Transfer 0.949 Output
0.000 Desired
0.999 Transfer 0.999 Output
0.000 Desired
0.854 Transfer 0.854 Output
0.000 Desired
-0.362 Transfer -0.362 Output
0.000 Desired
0.563 Transfer 0.563 Output
0.000 Desired
-0.677 Transfer -0.677 Output
0.000 Desired
0.550 Transfer $\quad 0.550$ Output
0.000 Desired
-0.905 Transfer -0.905 Output
0.000 Desired
0.987 Transfer 0.987 Output
0.000 Desired
0.836 Transfer 0.836 Output
0.000 Desired
0.750 Transfer 0.750 Output
0.000 Desired
0.941 Transfer
0.000 Desired
-0.908 Transfer
1.000 Err Factor
0.166 Sum
0.000 Desired
0.165 Transfer
0.165 Output

PE: 51

1.000 Err Factor $\quad 0.000$ Desired	
0.270 Sum	0.264 Transfer

PE: 52

1.000 Err Factor $\quad 0.000$ Desired	
0.125 Sum	0.124 Transfer

PE: 53
1.000 Err Factor
0.000 Desired
-1.336 Sum -0.871 Transfer
-0.871 Output
PE: 54
1.000 Err Factor
-0.958 Sum
0.000 Desired
-0.744 Transfer -0.744 Output
PE: 55
1.000 Err Factor
0.533 Sum
0.000 Desired
0.488 Transfer
0.488 Output

Layer: Hidden3
PEs: 25 Wgt Fields: 2
Spacing: 5
F^{\prime} offset: 0.00

Shape: Square
Scale: 1.00
Offset: 0.00 High Limit: 9999.00
Init Low: -0.100 Init High: 0.100
Winner 1: None
L/R Schedule: hidden3
$\begin{array}{lllllll}\text { Recall Step } & 1 & 0 & 0 & 0 & 0\end{array}$ $\begin{array}{llllll}\text { Firing Density } & 100.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000\end{array}$ Gain $\quad 1.0000 \quad 0.0000$ Gain
Learn Step $\begin{array}{lll}\text { Coefficient } 1 & 0.2000 & 0.1000 \\ \text { Coefficient } 2 & 0.3000 & 0.1500\end{array}$ Coefficient 30.10000 .1000
PE: 56

$$
\begin{array}{ll}
\text { 1.000 Err Factor } & 0.000 \text { Desired } \\
0.824 \text { Sum } & 0.677 \text { Transfer }
\end{array}
$$

*** 26 Weights -0.000 Error
-0.000 Error -0.000 Current Error
*** Repeat for PE's here on, 26 weights, nearly 0 error.
PE: 57
1.000 Err Factor
0.000 Desired
0.328 Sum 0.317 Transfer
0.317 Output

PE: 58

1.000	Err Factor	0.000 Desired	
-0.132 Sum	-0.131 Transfer	-0.131 Output	

PE: 59
1.000 Err Factor -0.035 Sum
PE: 60

$$
\begin{aligned}
& 1.000 \text { Err Factor } \\
& -0.120 \text { Sum }
\end{aligned}
$$

PE: 61

$$
\begin{aligned}
& \text { 1.000 Err Factor } \\
& -0.671 \text { Sum }
\end{aligned}
$$

PE: 62
1.000 Err Factor
0.000 Desired
-0.131 Transfer -0.131 Output
0.000 Desired
-0.035 Transfer -0.035 Output
0.000 Desired
-0.120 Transfer -0.120 Output
0.000 Desired
-0.586 Transfer -0.586 Output
0.000 Desired

```
-0.110 Sum
```

PE: 63
1.000 Err Factor -0.076 Sum
PE: 64

```
        1.000 Err Factor
        0.697 Sum
```

PE: 65
1.000 Err Factor -0.083 Sum
PE: 66
1.000 Err Factor -0.117 Sum
PE: 67
1.000 Err Factor
-2.059 Sum
PE: 68
1.000 Err Factor 0.513 Sum

PE: 69
1.000 Err Factor
-0.735 Sum
PE: 70
1.000 Err. Factor
-0.142 Sum
PE: 71
1.000 Err Factor 0.405 Sum

PE: 72
1.000 Err Factor 0.007 Sum

PE: 7.3
1.000 Err Factor 3.931 Sum

PE: 74
1.000 Err Factor 0.238 Sum

PE: 75

> 1.000 Err Factor -0.478 Sum

PE: 76
1.000 Err Factor -0.288 Sum
PE: 77
1.000 Err Factor
0.474 Sum

PE: 78
1.000 Err Factor -8.096 Sum
PE: 79
1.000 Err Factor 0.169 Sum

PE: 80

> 1.000 Err Factor -0.261 Sum

Layer: Out
0.000 Desired
-0.076 Transfer -0.076 Output
0.000 Desired
0.602 Transfer $\quad 0.602$ Output
0.000 Desired
-0.083 Transfer -0.083 Output
0.000 Desired
-0.117 Transfer -0.117 Output
0.000 Desired
-0.968 Transfer
-0.968 Output
0.000 Desired
0.472 Transfer
0.472 Output
0.000 Desired
-0.626 Transfer
-0.626 Output
0.000 Desired
-0.141 Transfer
-0.141 Output
0.000 Desired
0.384 Transfer
0.384 Output
0.000 Desired
0.007 Transfer
0.007 Output
0.000 Desired
0.999 Transfer
0.999 Output
0.000 Desired
0.234 Transfer
0.234 Output
0.000 Desired
-0.444 Transfer
-0.444 Output
0:000 Desired
-0.280 Transfer
-0.280 Output
0.000 Desired
0.441 Transfer
0.441 Output
0.000 Desired
-1.000 Transfer
-1.000 Output
0.000 Desired
0.167 Transfer
0.000 Desired
-0.255 Transfer
-0.255 Output

PEs: 1	Wgt Fiel			Sum:	Sum
Spacing: 5	F^{\prime} offs	0.00		Transfer	TanH
Shape: Square				Output	Direct
Scale: 1.00	ow Limit	9999.00		r Func:	tandard
Offset: 0.00 Hig	h Limit:	9.00		earn: Del	ta-Rule
Init Low: 00.100	Init High:	0.100	L/R	hedule:	
Winner 1: None				Winner 2	None
L/R Schedule: out					
Recall Step	1	0	0	0	0
Firing Density	100.0000	0.0000	0.0000	0.0000	0.0000
Gain	1.0000	0.0000	0.0000	0.0000	0.0000
Gain	1.0000	0.0000	0.0000	0.0000	0.0000
Learn Step	10000	30000	70000	150000	310000
Coefficient 1	0.1500	0.0750	0.0188	0.0012	0.0000
Coefficient 2	0.3000	0.1500	0.0375	0.0023	0.0000
Coefficient 3	0.1000	0.1000	0.1000	0.1000	0.1000
PE: 81					
1.000 Err Fact	or -0	298 Desi			
-0.307 Sum	-0	298 Tran		-0.29	Output
26 Weights	0.000	ror	0	00 Curren	Error

Decryption desired and actual output after convergence according to input of Table 4.1:

Desired:
4780.000000
4942.000000
8523.000000
9880.000000
13751.000000
21386.000000
26946.000000
26139.000000
29325.000000
30022.000000
33050.000000
34609.000000
37175.000000
38939.000000
41305.000000
41525.000000
25907.000000
12828.000000
16986. 000000
45926.000000
45353.000000
50536.000000 54086.000000 54097.000000 59988. 000000 62803.000000 3018.000000 2445.000000

Actual:
4779.549316
4941.904785
8523.464258
9880.255859
13750.194336
21385.947266
26945.638672
26138. 501953
29324.567578
30022.140625
33049.261719
34609.441406
37174.546875
38939.292969
41305.357031
41525.300781
25907. 408984
12828.163086
16985.839844
45925.791406
45353.366406
50535.578906
54086. 265625
54097.269531
59988. 027344
62803.003906
3017.567871
2444.980957

REFERENCES

1. W. F. Ehrsam, S. M. Matyas, C. H. Meyer, and W. L. Tuchman, "A Cryptographic Key Management Scheme for Implementing the Data Encryption Standard," IBM System Journal, Vol 17 No 2, 1978, pp.106-107.
2. Jennifer Seberry, Josef Pieprzyk, "Cryptography, An introduction to Computer Security," Advances in Computer Science Series, Australia Pty Ltd, 1989, pp 8-188.
3. W. S. Scott, R. N. Mayo, G. Hamachi, J. K. Ousterhous,"1986 VLSI Tools Still More Works by Original Artists," Report No. UCB/CSD 86/272, University of California at Berkeley, Berkely, CA 1986.
4. VLSI Design Tools Reference Manual, Northwest Laboratory for Integrated Systems, TR 88-09-01 University of Washington, Seattle, Sec 6.4 pp. 20-48.
5. Donald E. Knuth, The Art of Computer Programming, Vol.2: Seminumerical Algorithm, Addison Wesley, Reading MA, 1981, pp. 399-401, 419-420.
6. Carl Pomerance,"Cryptography and Computational Number Theory-An Introduction," Proceedings of Symposia in Applied Mathematics:American Mathematical Society, Vol 42, Rhode Island, 1990, pp.1-11.
7. D. H. Ackley, G. H. Hinton, T. J. Sejnowski, "A Learning Algorithm for Boltzman Machine," Cognitive Science 9, 1985, pp. 147-169.
8. G. W. Cottrell, P. Munro, D. Zipser, "Image Compression by Back-Propagation: An Example of Extensional Programming," ICS Report 8702, University of California at San Diego, Feb, 1987.
9. R. Hecht-Nielsen, Neurocomputing, Prentice Hall, Englewood Cliffs, NJ, 1991, pp. 2, 124-137.
10. Neuralcomputing, Neuralworks Professional II/Plus and Neural Network Explorer, Neuralware Inc., Pittsburg, 1991, pp. 3-11, 89-101.
11. S. Goldwasser, S. Micali, A. C. Yao,"On Signature and Authorization," Advances in Cryptology: Proceedings of Crypto '82, Plenum Press., 1983, pp. 211-215.
12. Giles Brassard, "Modern Cryptography," Lecture Notes in Computre Science, Vol 325, Springer-Verlag, NewYork, 1988, pp.20-31.
13. Kevin S. McCurley, "The Discrete Logarithm Problem", IBM Research Report RJ6877, Yorktown Heights, NY, 1989, pp20-21.
14. W. Diffie, M. G. Hellman, "New Direction in Cryptography," IEEE Transactions on Information Theory, Vol. IT-22, 1976, pp. 472-492, 644-654.
15. Ronald L. Rivest , "RSA Chips (Past/Present/Future)," Advances in CryptologyEurocrypt '84, Berlin 1985, p. 159.
16. Carl Pomerance, "Factoring," Proceeding of Symposia in Applied Mathematics: American Mathematical Society Vol 42, RI, 1990, pp.27-48.
17. J. A. Davis, D. B. Holdridge, G. J. Simmons, "Status Report on Factoring," Advances in Cryptology- Eurocrypt '84, Berlin, 1985, p. 183.
18. Carl Pomerance, "The Quadratic Sieve Factoring Algorithm," Advances in Cryptology- Eurocrypt '84, Berlin, 1985, pp.169-181.
19. P.A. Findley, B. A. Johnson, "Modulo Exponentiation Using Recursive Sums of Residues," Advances in Cryptology- Crypto '89, Springer-Verlag, pp. 371-386.
20. Neil West, Kamran Eshraghian, Principles of CMOS VLSI Design, Addison Wesley, Reading, MA, pp.212-224, 310-312.
21. Andrei Vladimirescu, Sally Liu,"The Simulation of MOS Integrated Circuits Using Spice2," Electronics Research Laboratory, UC Berkeley, UCB/ERL M80/7, October 1980.
22. Carver Mead, Lynn Conway, Introduction to VLSI Systems, Addison Wesley,Reading MA 1980, pp.150-153.
23. FIPS,"Data Encryption Standard", Federal Information Processing Standard Publication, 46-1, NBS, Jan, 1988.
24. R. Hecht-Nielsen, Neurocomputing, Prentice Hall, Englewood Cliffs, NJ, 1991, pp. 3-1, 89-101.
25. S. Luce, D. Martins, S. Nunn, J. Waters, "Exploring the Back-Propagation Model for Speech Application," Speech Tech', 1988, pp. 199-203.
26. Neuralcomputing, Neuralworks Professional II/Plus and Neural Network Explorer, Neuralware Inc., Pittsburg, 1991, pp. 3-11, 89-101.
27. Dorothy E. R. Denning, Cryptography and Data Security Addison Wesley, Reading MA 1982, pp.62-78.
28. John Wakerly, Digital Design Principles and Practices, Prentice Hall, Englewood Cliffs, NJ, pp. 484-486.

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145
2. Library, Code 52 2
Naval Postgraduate School
Monterey, CA 93943-5002
3. Chairman, Code EC 1
Department of Electrical and Computer Engineering Naval Postgraduate School Monterey, CA 93943-5002
4. Dr. Chyan Yang, Code EC/Ya 2
Department of Electrical and Computer Engineering Naval Postgraduate School
Monterey, CA 93943-5000
5. Dr. Herschel H. Loomis Jr, Code EC/Lo 1
Department of Electrical and Computer Engineering Naval Postgraduate School
Monterey, CA 93943-5000
6. Director National Security Agency 1
Attn: Mr Alan Chedester, V29
2800 Savage Rd
Ft Meade, MD 20755
7. LT Phong Nguyen 2
1236 Denton Avenue
Hayward, CA 94545

DUDLEY KNOX LIBRARY
NAVAL POSTTGRADUATE SCHOOL
MONTER: : CA 93943-5101

